106
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of the temporal evolution of microparticle resuspension in ventilated duct during a fan start by a Monte Carlo model

, , , &
Pages 244-263 | Received 06 Jul 2023, Accepted 19 Jan 2024, Published online: 21 Feb 2024

References

  • Audry, M.-C., S. Ramos, and E. Charlaix. 2009. Adhesion between highly rough alumina surfaces: An atomic force microscope study. J. Colloid Interf. Sci. 331 (2):371–8. doi: 10.1016/j.jcis.2008.11.050.
  • Barth, T., J. Preuß, G. Müller, and U. Hampel. 2014. Single particle resuspension experiments in turbulent channel flows. J. Aerosol. Sci. 71:40–51. doi: 10.1016/j.jaerosci.2014.01.006.
  • Benito, J. G., K. A. Valenzuela Aracena, R. O. Uñac, A. M. Vidales, and I. Ippolito. 2015. Monte Carlo modelling of particle resuspension on a flat surface. J. Aerosol Sci. 79:126–39. doi: 10.1016/j.jaerosci.2014.10.006.
  • Benito, J. G., R. O. Uñac, A. M. Vidales, and I. Ippolito. 2016. Validation of the Monte Carlo model for resuspension phenomena. J. Aerosol Sci. 100:26–37. doi: 10.1016/j.jaerosci.2016.05.008.
  • Binder, K., and D. Heermann. 2010. Monte Carlo simulation in statistical physics: An introduction. 5th ed. Berlin: Springer Verlag.
  • Bohme, G., H. Krupp, H. Rabenhorst, and G. Sandstede. 1962. Adhesion measurements involving small particles. Trans. Inst. Chem. Eng. 40:252–9.
  • Braaten, D. A., U. K. Paw, and R. H. Shaw. 1990. Particle resuspension in a turbulent boundary layer – Observed and modeled. J. Aerosol Sci. 21 (5):613–28. doi: 10.1016/0021-8502(90)90117-G.
  • Braaten, D. A. 1994. Wind tunnel experiments of large particle reentrainment-deposition and development of large particle scaling parameters. Aerosol Sci. Technol. 21 (2):157–69. doi: 10.1080/02786829408959705.
  • Brambilla, S., S. Speckart, M. N. Rush, G. A. Montano, and M. J. Brown. 2018. Glass particle resuspension from a contaminated (dirty) glass surface. J. Aerosol Sci. 123:122–30. doi: 10.1016/j.jaerosci.2018.06.011.
  • Brambilla, S., and M. J. Brown. 2020. Impact of the adhesion-force lever-arm “a” on the rock ‘n’ roll resuspension model and how to compute it from contact mechanics. J. Aerosol Sci. 143:105525. doi: 10.1016/j.jaerosci.2020.105525.
  • Fichthorn, K. A., and W. H. Weinberg. 1991. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 95 (2):1090–6. doi: 10.1063/1.461138.
  • Friess, H., and G. Yadigaroglu. 2001. A Generic Model for the Resuspension of Multilayer Aerosol Deposits by Turbulent Flow. Nuclear Sci. Eng. 138 (2):161–76. doi: 10.13182/NSE01-A2207.
  • Henry, C., and J. P. Minier. 2014. Progress in particle resuspension from rough surfaces by turbulent flows. Prog. Energy Combust. Sci. 45:1–53. doi: 10.1016/j.pecs.2014.06.001.
  • Henry, C., J. P. Minier, and S. Brambilla. 2023. Particle resuspension: Challenges and perspectives for future models. Phys. Rep. 1007:1–98. doi: 10.1016/j.physrep.2022.12.005.
  • Ibrahim, A., P. Dunn, and R. Brach. 2003. Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling. J. Aerosol Sci. 34 (6):765–82. doi: 10.1016/S0021-8502(03)00031-4.
  • Ibrahim, A. H., P. F. Dunn, and M. F. Qazi. 2008. Experiments and validation of a model for microparticle detachment from a surface by turbulent air flow. J. Aerosol Sci. 39 (8):645–56. doi: 10.1016/j.jaerosci.2008.03.006.
  • Johnson, K., K. Kendall, and A. Roberts. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A. 324:301–13.
  • Kang, H. C., and W. H. Weinberg. 1989. Dynamic Monte Carlo with a proper energy barrier: Surface diffusion and two‐dimensional domain ordering. J. Chem. Phys. 90 (5):2824–30. doi: 10.1063/1.455932.
  • Kassab, A. S., V. M. Ugaz, M. D. King, and Y. Hassan. 2013. High resolution study of micrometer particle detachment of different surfaces. Sci. Technol. 47 (4):351–60. doi: 10.1080/02786826.2012.752789.
  • Liu, Z., H. Niu, R. Rong, G. Cao, B. J. He, and Q. Deng. 2020. An experimental and numerical study of resuspension of fungal spore particles from HVAC ducts. Sci. Total Environ. 708:134742. doi: 10.1016/j.scitotenv.2019.134742.
  • Masironi, L. A., and B. R. Fish. 1967. Direct observation of particle re-entrainment from surfaces contamination, ed. B. R. Fish, 55–9. Oxford: Program Press.
  • Matsusaka, S., T. Aoyagi, and H. Masuda. 1991. Unsteady particle-reentrainment model based on the internal adhesive strength distribution of a fine powder layer. Kagaku Kogaku Ronbunshu 17 (6):1194–200. doi: 10.1252/kakoronbunshu.17.1194.
  • Mollinger, A. M., F. T. M. Nieuwstadt, and J. M. Bessem. 1995. A new device to measure the lift force on a particle in the viscous sublayer. Meas. Sci. Technol. 6 (2):206–13. doi: 10.1088/0957-0233/6/2/013.
  • Nasr, B., G. Ahmadi, A. R. Ferro, and S. Dhaniyala. 2019. Overview of mechanistic particle resuspension models: Comparison with compilation of experimental data. J. Adhes. Sci. Technol. 33 (24):2631–60. doi: 10.1080/02786826.2019.1692126.
  • Peillon, S., A. Autricque, M. Redolfi, C. Stancu, F. Gensdarmes, C. Grisolia, and O. Pluchery. 2019. Adhesion of tungsten particles on rough tungsten surfaces using atomic force microscopy. J. Aerosol Sci. 137:105431. doi: 10.1016/j.jaerosci.2019.105431.
  • Popovich, A. T., and R. L. Hummel. 1967. Experimental study of the viscous sublayer in turbulent pipe flow. AIchE Jour 13 (5):854–60. doi: 10.1002/aic.690130509.
  • Rabinovich, Y. I., J. J. Adler, A. Ata, R. K. Singh, and B. M. Moudgil. 2000a. Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J. Colloid Interf. Sci. 232 (1):10–6. doi: 10.1006/jcis.2000.7167.
  • Rabinovich, Y. I., J. J. Adler, A. Ata, R. K. Singh, and B. M. Moudgil. 2000b. Adhesion between nanoscale rough surfaces: II. Measurements and comparison with theory. J. Colloid Interf. Sci. 232 (1):17–24. doi: 10.1006/jcis.2000.7168.
  • Ray, L. A., and R. C. Baetzold. 1990. A Monte Carlo estimation of surface diffusion by simulating laser‐induced thermal desorption. J. Chem. Phys. 93 (4):2871–8. doi: 10.1063/1.458872.
  • Reeks, M., J. Reed, and D. Hall. 1988. On the resuspension of small particles by a turbulent flow. J. Phys. D: Appl. Phys. 21 (4):574–89. doi: 10.1088/0022-3727/21/4/006.
  • Reeks, M., and D. Hall. 2001. Kinetic models for particle resuspension in turbulent flows: Theory and measurement. J. Aerosol Sci. 32 (1):1–31. doi: 10.1016/S0021-8502%2800%2900063-X.
  • Rush, M. N., S. Brambilla, S. Speckart, G. A. Montaño, and M. J. Brown. 2018. Glass-particle adhesion-force-distribution on clean (laboratory) and contaminated (outdoor) surfaces. J. Aerosol Sci. 123:231–44. doi: 10.1016/j.jaerosci.2018.06.002.
  • Salazar-Banda, G., M. Felicetti, J. Gonçalves, J. Coury, and M. Aguiar. 2007. Determination of the adhesion force between particles and a flat surface, using the centrifuge technique. Powder Technol. 173 (2):107–17. doi: 10.1016/j.powtec.2006.12.011.
  • Sales, J. L., R. O. Uñac, M. V. Gargiulo, V. Bustos, and G. Zgrablich. 1996. Monte Carlo simulation of temperature programmed desorption spectra: A guide through the forest for mono molecular adsorption on a square lattice. Langmuir. 12 (1):95–100. doi: 10.1021/la940859s.
  • Soltani, M., and G. Ahmadi. 1994. Particle removal mechanisms under substrate acceleration. J. Adhesion. 44 (3):161–75. doi: 10.1080/00218469408027075.
  • Taheri, M., and G. Bragg. 1992. A study of particle resuspension in a turbulent flow using a preston tube. Aerosol Sci. Technol. 16 (1):15–20. doi: 10.1080/02786829208959534.
  • Theron, F., D. Debba, and L. Le Coq. 2020. Local experimental methodology for the study of microparticles resuspension in ventilated duct during fan acceleration. J. Aerosol Sci. 140:105477. doi: 10.1016/j.jaerosci.2019.105477.
  • Theron, F., D. Debba, and L. Le Coq. 2022. Influence of the transient airflow pattern on the temporal evolution of microparticle resuspension: Application to ventilated duct during fan acceleration. Aerosol Sci. Technol. 56 (11):1033–46. doi: 10.1080/02786826.2022.2120793.
  • Vainshtein, P., G. Ziskind, M. Fichman, and C. Gutfinger. 1997. Kinetic model of particle resuspension by drag force. Phys. Rev. Lett. 78 (3):551–4. doi: 10.1103/PhysRevLett.78.551.
  • Villagrán Olivares, M. C., J. G. Benito, R. O. Uñac, and A. M. Vidales. 2022. Kinetic Monte Carlo method applied to micrometric particle detachment mechanisms by aerodynamic forces. J. Phys. Condens. Matter. 34 (7):074001. doi: 10.1088/1361-648x/ac3690.
  • Vincent, J. C., J. Hill, M. D. Walker, S. A. Smith, S. E. Smith, and N. E. Cant. 2019. Towards a predictive capability for the resuspension of particles through extension and experimental validation of the Biasi implementation of the “rock’n roll” model. J. Aerosol Sci. 137:105435. doi: 10.1016/j.jaerosci.2019.105435.
  • Wang, H. C. 1990. Effects of inceptive motion in particle detachment from surfaces. Aerosol Sci. Technol. 13 (3):386–93. doi: 10.1080/02786829008959453.
  • Wen, H., and G. Kasper. 1989. On the kinetics of particle reentrainment from surfaces. J. Aerosol Sci. 20 (4):483–98. doi: 10.1016/0021-8502(89)90082-7.
  • Zhang, F., M. Reeks, and M. Kissane. 2013. Particle resuspension in turbulent boundary layers and the influence of non-Gaussian removal forces. J. Aerosol Sci. 58:103–28. doi: 10.1016/j.jaerosci.2012.11.009.
  • Zhdanov, V. P. 1991. Elementary physicochemical processes on solid surfaces. 1st ed. Berlin: Springer. doi: 10.1007/978-1-4899-2373-8.
  • Ziskind, G., M. Fichman, and C. Gutfinger. 1995. Resuspension of particles from surfaces to turbulent flows – Review and analysis. J. Aerosol Sci. 26 (4):613–44. doi: 10.1016/0021-8502(94)00139-P.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.