454
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Aerosol deposition in 90-degree bends: An enhanced empirical equation and a design concept of reducing losses

ORCID Icon, , &
Pages 475-484 | Received 15 Jul 2023, Accepted 31 Jan 2024, Published online: 04 Mar 2024

References

  • Al-Dulaijan, Y. A., L. Alsulaimi, R. Alotaibi, A. Alboainain, H. Alalawi, S. Alshehri, S. Q. Khan, M. Alsaloum, H. S. AlRumaih, A. A. Alhumaidan, et al. 2022. Comparative evaluation of surface roughness and hardness of 3d printed resins. Materials 15 (19):6822. doi: 10.3390/ma15196822.
  • Baron, P., G. J. Deye, A. B. Martinez, E. N. Jones, and J. S. Bennett. 2008. Size shifts in measurements of droplets with the aerodynamic particle sizer and the aerosizer. Aerosol Sci. Technol. 42 (3):201–9. doi: 10.1080/02786820801958734.
  • Baron, P. A. 1986. Calibration and use of the aerodynamic particle sizer (aps 3300). Aerosol Sci. Technol. 5 (1):55–67. doi: 10.1080/02786828608959076.
  • Bartley, D., A. Martinez, P. Baron, D. Secker, and E. Hirst. 2000. Droplet distortion in accelerating flow. J. Aerosol Sci. 31 (12):1447–60. doi: 10.1016/S0021-8502(00)00042-2.
  • Berger, S. A., L. Talbot, and L. Yao. 1983. Flow in curved pipes. Annu. Rev. Fluid Mech. 15 (1):461–512. doi: 10.1146/annurev.fl.15.010183.002333.
  • Berrouk, A. S., and D. Laurence. 2008. Stochastic modelling of aerosol deposition for les of 90 bend turbulent flow. Int. J. Heat Fluid Flow 29 (4):1010–28. doi: 10.1016/j.ijheatfluidflow.2008.02.010.
  • Bhagat, A. A. S., S. S. Kuntaegowdanahalli, and I. Papautsky. 2008. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip. 8 (11):1906–14. doi: 10.1039/b807107a.
  • Boiron, O., V. Deplano, and R. Pelissier. 2007. Experimental and numerical studies on the starting effect on the secondary flow in a bend. J. Fluid Mech. 574:109–29. doi: 10.1017/S0022112006004149.
  • Breuer, M., H. T. Baytekin, and E. A. Matida. 2006. Prediction of aerosol deposition in 90∘ bends using les and an efficient lagrangian tracking method. J. Aerosol Sci. 37 (11):1407–28. doi: 10.1016/j.jaerosci.2006.01.013.
  • Cheng, Y-s, and C-s Wang. 1975. Inertial deposition of particles in a bend. J. Aerosol Sci. 6 (2):139–45. doi: 10.1016/0021-8502(75)90007-5.
  • Cheng, Y.-S., and C. Wang. 1981. Motion of particles in bends of circular pipes. Atmos. Environ. (1967) 15 (3):301–6. doi: 10.1016/0004-6981(81)90032-9.
  • Crane, R., and R. Evans. 1977. Inertial deposition of particles in a bent pipe. J. Aerosol Sci. 8 (3):161–70. doi: 10.1016/0021-8502(77)90003-9.
  • Crowe, C. T., J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji. 2011. Multiphase flows with droplets and particles. Boca Raton, FL: CRC Press.
  • Eckmann, D. M., and J. B. Grotberg. 1988. Oscillatory flow and mass transport in a curved tube. J. Fluid Mech. 188:509–27. doi: 10.1017/S0022112088000825.
  • Elghobashi, S. 1994. On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4):309–29. doi: 10.1007/BF00936835.
  • European Union. 2017. Stationary source emissions - determination of low range mass concentration of dust - part 1: Manual gravimetric method.
  • Gad, M. M., S. M. Fouda, R. Abualsaud, F. A. Alshahrani, A. M. A. Thobity, S. Q. Khan, S. Akhtar, I. S. Ateeq, M. A. Helal, and F. A. Al‐Harbi. 2022. Strength and surface properties of a 3d‐printed denture base polymer. J. Prosthodont. 31 (5):412–8. doi: 10.1111/jopr.13413.
  • Griffiths, W., P. Iles, and N. Vaughan. 1986. The behaviour of liquid droplet aerosols in an aps 3300. J. Aerosol Sci. 17 (6):921–30. doi: 10.1016/0021-8502(86)90018-2.
  • Hacker, P. T., R. J. Brun, and B. Boyd. 1953. Impingement of droplets in 90° elbows with potential flow. NACA TN 2999:14.
  • Hilbert, L. R., D. Bagge-Ravn, J. Kold, and L. Gram. 2003. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. Int. Biodeterior. Biodegrad. 52 (3):175–85. doi: 10.1016/S0964-8305(03)00104-5.
  • Hinds, W. C., and Y. Zhu. 2022. Aerosol technology: Properties, behavior, and measurement of airborne particles. Hoboken, NJ: John Wiley & Sons.
  • Inthavong, K. 2019. A unifying correlation for laminar particle deposition in 90-degree pipe bends. Powder Technol. 345:99–110. doi: 10.1016/j.powtec.2018.12.095.
  • Kandlikar, S. G., S. Joshi, and S. Tian. 2003. Effect of surface roughness on heat transfer and fluid flow characteristics at low reynolds numbers in small diameter tubes. Heat Transfer Eng. 24 (3):4–16. doi: 10.1080/01457630304069.
  • Kulkarni, P., P. A. Baron, and K. Willeke. 2011. Aerosol measurement: Principles, techniques, and applications. Hoboken, NJ: John Wiley & Sons.
  • Landahl, H., and R. Herrmann. 1949. Sampling of liquid aerosols by wires, cylinders, and slides, and the efficiency of impaction of the droplets. J. Colloid Sci. 4 (2):103–36. doi: 10.1016/0095-8522(49)90038-0.
  • Ligrani, P. M. 1994. A study of dean vortex development and structure in a curved rectangular channel with aspect ratio of 40 at dean numbers up to 430: NASA.
  • Lin, J., P. Lin, and H. Chen. 2009. Research on the transport and deposition of nanoparticles in a rotating curved pipe. Phys. Fluids 21 (12):122001. doi: 10.1063/1.3264110.
  • McFarland, A. R., H. Gong, A. Muyshondt, W. Wente, and N. Anand. 1997. Aerosol deposition in bends with turbulent flow. Environ. Sci. Technol. 31 (12):3371–7. doi: 10.1021/es960975c.
  • Mori, Y. 1965. Study on forced convective heat transfer in curved pipes-1. Laminar region. Int. J. Heat Mass Transfer 8:67–82.
  • Peters, T. M., and D. Leith. 2004. Particle deposition in industrial duct bends. Ann. Occup. Hyg. 48 (5):483–90.
  • Pilou, M., S. Tsangaris, P. Neofytou, C. Housiadas, and Y. Drossinos. 2011. Inertial particle deposition in a 90 laminar flow bend: An eulerian fluid particle approach. Aerosol Sci. Technol. 45 (11):1376–87. doi: 10.1080/02786826.2011.596171.
  • Pui, D. Y., F. Romay-Novas, and B. Y. Liu. 1987. Experimental study of particle deposition in bends of circular cross section. Aerosol Sci. Technol. 7 (3):301–15. doi: 10.1080/02786828708959166.
  • Saffman, P. G. 1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2):385–400. doi: 10.1017/S0022112065000824.
  • Sato, S., D.-R. Chen, and D. Y. Pui. 2003. Particle transport at low pressure: Deposition in bends of a circular cross-section. Aerosol Sci. Technol. 37 (10):770–9. doi: 10.1080/02786820300911.
  • Scotti, C. K., M. M. d A. C. Velo, F. A. P. Rizzante, T. R. de Lima Nascimento, R. F. L. Mondelli, and J. F. S. Bombonatti. 2020. Physical and surface properties of a 3d-printed composite resin for a digital workflow. J. Prosthet. Dent. 124 (5):e611–614. e615. doi: 10.1016/j.prosdent.2020.03.029.
  • Sorooshian, A., F. J. Brechtel, Y. Ma, R. J. Weber, A. Corless, R. C. Flagan, and J. H. Seinfeld. 2006. Modeling and characterization of a particle-into-liquid sampler (pils). Aerosol Sci. Technol. 40 (6):396–409. doi: 10.1080/02786820600632282.
  • Sudarsan, A. P., and V. M. Ugaz. 2006. Multivortex micromixing. Proc. Natl. Acad. Sci. U. S. A. 103 (19):7228–33. doi: 10.1073/pnas.0507976103.
  • Sun, K., and L. Lu. 2013. Particle flow behavior of distribution and deposition throughout 90 bends: Analysis of influencing factors. J. Aerosol Sci. 65:26–41. doi: 10.1016/j.jaerosci.2013.07.002.
  • Sun, K., L. Lu, H. Jiang, and H. Jin. 2013. Experimental study of solid particle deposition in 90 ventilated bends of rectangular cross section with turbulent flow. Aerosol Sci. Technol. 47 (2):115–24. doi: 10.1080/02786826.2012.731094.
  • TSI Inc. 2012. Model 3321 aerodynamic particle sizer spectrometer. Operation and service manual.
  • USEPA. 2019. Performance specification 11 - specifications and test procedures for particulate matter continuous emission monitoring systems at stationary sources The United States
  • Vasquez, E. S., K. B. Walters, and D. K. Walters. 2015. Analysis of particle transport and deposition of micron-sized particles in a 90 bend using a two-fluid eulerian–eulerian approach. Aerosol Sci. Technol. 49 (9):692–704. doi: 10.1080/02786826.2015.1062466.
  • Wang, S. 2019. Optimal design of sampling train for extractive pm cems. In Institute of Occupational Medicine and Industrial Hygiene. Taipei, Taiwan: National Taiwan University.
  • Wang, S., Y.-M. Kuo, C.-W. Lin, S.-H. Huang, and C.-C. Chen. 2023. Development of a sampling assembly for pm2. 5 cems. J. Aerosol Sci. 174:106244. doi: 10.1016/j.jaerosci.2023.106244.
  • Wang, S., Y.-M. Kuo, C.-W. Lin, S.-H. Huang, B. Fu, Q. Zhang, and C.-C. Chen. 2022. A simple method for aerosol transport efficiency tests in sampling tubes. Aerosol Air Qual. Res. 22 (11):220219. doi: 10.4209/aaqr.220219.
  • Wang, X., J. Watson, J. Chow, S. Kohl, L.-W. Chen, D. Sodeman, A. Legge, and K. Percy. 2012. Measurement of real-world stack emissions with a dilution sampling system. Dev. Environ. Sci. 11:171–92.
  • Wilson, S. R., Y. Liu, E. A. Matida, and M. R. Johnson. 2011. Aerosol deposition measurements as a function of reynolds number for turbulent flow in a ninety-degree pipe bend. Aerosol Sci. Technol. 45 (3):364–75. doi: 10.1080/02786826.2010.538092.
  • Yamano, N, and J. Brockmann. 1989. Aerosol sampling and transport efficiency calculation (astec) and application to surtsey/dch aerosol sampling system: Code version 1. 0: Code description and user’s manual. Nuclear Regulatory Commission, Washington, DC (USA). Div. of Systems.
  • Yeh, H.-C. 1974. Use of a heat transfer analogy for a mathematical model of respiratory tract deposition. Bull. Math. Biol. 36:105–16. doi: 10.1016/S0092-8240(74)80014-5.
  • Yook, S.-J., and D. Y. Pui. 2006. Experimental study of nanoparticle penetration efficiency through coils of circular cross-sections. Aerosol Sci. Technol. 40 (6):456–62. doi: 10.1080/02786820600660895.
  • Zhu, R., Y. Zhang, Y. Yuan, and S. Li. 2018. Deposition loss of particles in the sampling lines of continuous emission monitoring system (cems) in coal-fired power plants. Aerosol Air Qual. Res. 18 (6):1483–92. doi: 10.4209/aaqr.2017.11.0523.