489
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Verifying the viable particle counts of biofluorescent particle counters by using inkjet aerosol generators

ORCID Icon, , & ORCID Icon
Pages 554-568 | Received 18 Sep 2023, Accepted 01 Feb 2024, Published online: 22 Feb 2024

References

  • BioVigilant. 2019. IMD-ATM Model 600, microbial challenge and interferent test results. Tucson, AZ: Azbil North America.
  • BSI. 2020a. BE EN 17141 cleanrooms and associated controlled environments-biocontamination control, in 6. Microbiological measurement methods. London, UK: British Standards Institution.
  • BSI. 2020b. BS EN 17141 cleanrooms and associated controlled environments-biocontamination control, in Annex F Rapid microbiological methods (RMM) and alternative real time microbiological detection methods (AMMs). London, UK: British Standards Institution.
  • Crawford, I., D. Topping, M. Gallagher, E. Forde, J. R. Lloyd, V. Foot, C. Stopford, and P. Kaye. 2020. Detection of airborne biological particles in indoor air using a real-time advanced morphological parameter UV-LIF spectrometer and gradient boosting ensemble decision tree classifiers. Atmosphere 11 (10):1039. doi: 10.3390/atmos11101039.
  • Dai, C., Y. Zhang, X. Ma, M. Yin, H. Zheng, X. Gu, S. Xie, H. Jia, L. Zhang, and W. Zhang. 2015. Real-time measurements of airborne biologic particles using fluorescent particle counter to evaluate microbial contamination: Results of a comparative study in an operating theater. Am. J. Infect. Control. 43 (1):78–81. doi: 10.1016/j.ajic.2014.10.004.
  • European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM-EC). 2020. European Pharmacopeia, in Chapter 5.1.6 Alternative Methods for Control of Microbiological Quality, 79–88. Strasbourg, Cedex, France.
  • European Commission. 2022. EU guidelines to good manufacturing practice medicinal products for human and veterinary use. In Annex 1: Manufacture of sterile medicinal products. Brussel, Belgium: European Comission.
  • Hasegawa, N. 2013. Quantitative comparison of the autofluorescence of bacteria and polystyrene microspheres under violet wavelength excitation for verification of fluorescence-based bioaerosol detector results. Biocontrol Sci. 18 (4):211–5. doi: 10.4265/bio.18.211.
  • Healy, D. A., D. J. O’Connor, and J. R. Sodeau. 2012. Measurement of the particle counting efficiency of the “waveband integrated bioaerosol sensor” model number 4 (wibs-4). J. Aerosol Sci. 47:94–9. doi: 10.1016/j.jaerosci.2012.01.003.
  • Hill, S. C., M. W. Mayo, and R. K. Chang. 2009. Fluorescence of bacteria, pollens, and naturally occurring airborne particles: Excitation/emission spectra. Adelphi, MD: Army Research Laboratory.
  • Huffman, J. A., A. E. Perring, N. J. Savage, B. Clot, B. Crouzy, F. Tummon, O. Shoshanim, B. Damit, J. Schneider, V. Sivaprakasam, et al. 2020. Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Sci. Technol. 54 (5):465–95. doi: 10.1080/02786826.2019.1664724.
  • Hutchins, P. M., and M. Dingle. 2021. Real-time viable particle monitoring: How does it work? How can it help? P/N 5002135 (A4) RevC. https://tsi.com/getmedia/8d724f2a-571b-4748-af0c-491738578355/5002135_A4_White-Paper_Real-Time-Variable-Particle-Monitoring_RevC_Web?ext=.pdf.
  • Iida, K., and H. Sakurai. 2018. Counting efficiency evaluation of optical particle counters in micrometer range by using an inkjet aerosol generator. Aerosol Sci. Technol. 52 (10):1156–66. doi: 10.1080/02786826.2018.1505032.
  • Iida, K., H. Sakurai, K. Auderset, and K. Vasilatou. 2021. Using an inkjet aerosol generator to study particle bounce in optical particle counters. Aerosol Sci. Technol. 55 (10):1165–82. doi: 10.1080/02786826.2021.1950910.
  • Iida, K., H. Sakurai, K. Saito, and K. Ehara. 2014. Inkjet aerosol generator as monodisperse particle number standard. Aerosol Sci. Technol. 48 (8):789–802. doi: 10.1080/02786826.2014.930948.
  • ISO/TC24/SC4/WG3. 2014. Determination of density by volumetric displacement—skeleton density by gas pycnometry. Geneva, Switzerland: International Organization for Standardization.
  • Kaye, P. H., W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington. 2005. Single particle multichannel bio-aerosol fluorescence sensor. Opt. Express. 13 (10):3583–93. doi: 10.1364/OPEX.13.003583.
  • Lieberherr, G., K. Auderset, B. Calpini, B. Clot, B. Crouzy, M. Gysel-Beer, T. Konzelmann, J. Manzano, A. Mihajlovic, A. Moallemi, et al. 2021. Assessment of real-time bioaerosol particle counters using reference chamber experiments. Atmos. Meas. Tech. 14 (12):7693–706. doi: 10.5194/amt-14-7693-2021.
  • Malli Mohan, G. B., M. C. Stricker, and K. Venkateswaran. 2019. Microscopic characterization of biological and inert particles associated with spacecraft assembly cleanroom. Sci. Rep. 9 (1):14251. doi: 10.1038/s41598-019-50782-0.
  • Maximilian, M., M. Alexander, K. Kaisa, R. P. Manuela, O.-W. Lisa, K. Robert, K. P. Alexandra, G. Gregor, B. Gabriele, and M.-E. Christine. 2016. Microorganisms in confined habitats: Microbial monitoring and control of intensive care units, operating rooms, cleanrooms and the international space station. Front. Microbiol. 7:1573. doi: 10.3389/fmicb.2016.01573.
  • Petersson Sjögren, M., M. Alsved, T. Šantl-Temkiv, T. Bjerring Kristensen, and J. Löndahl. 2023. Measurement report: Atmospheric fluorescent bioaerosol concentrations measured during 18 months in a coniferous forest in the south of Sweden. Atmos. Chem. Phys. 23 (9):4977–92. doi: 10.5194/acp-23-4977-2023.
  • Particle Measuring Systems. 2012. Validation of the BioLazTMReal-Time Microbial Monitor to USP <1223> and EP 5.1.6, App Note 205. Boulder, Colorado.
  • Ruske, S., D. O. Topping, V. E. Foot, P. H. Kaye, W. R. Stanley, I. Crawford, A. P. Morse, and M. W. Gallagher. 2017. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer. Atmos. Meas. Tech. 10 (2):695–708. doi: 10.5194/amt-10-695-2017.
  • Saari, S., T. Reponen, and J. Keskinen. 2014. Performance of two fluorescence-based real-time bioaerosol detectors: Bioscout vs. Uvaps. Aerosol Sci. Technol. 48 (4):371–8. doi: 10.1080/02786826.2013.877579.
  • Sauvageat, E., Y. Zeder, K. Auderset, B. Calpini, B. Clot, B. Crouzy, T. Konzelmann, G. Lieberherr, F. Tummon, and K. Vasilatou. 2020. Real-time pollen monitoring using digital holography. Atmos. Meas. Tech. 13 (3):1539–50. doi: 10.5194/amt-13-1539-2020.
  • Savage, N. J., C. E. Krentz, T. Könemann, T. T. Han, G. Mainelis, C. Pöhlker, and J. A. Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–302. doi: 10.5194/amt-10-4279-2017.
  • TSI Inc. 2012. BioTrakTM Real-time viable particle counter: Discrimination capability. Application Note CC-103. https://tsi.com/getmedia/35389388-cbd1-41dd-bbd4-240d9aad58b9/BioTrak_Discrimination_Capability_US_CC-103-web?ext=.pdf.
  • TSI Inc. 2014. BioTrakTM Real-time viable particle counter: Sample and collection efficiency. Application Note CC-104. https://tsi.com/getmedia/21f77e90-0fe7-4a67-b48e-b5f6911af030/BioTrak_Sample_and_Collection_Efficiency_US_CC-104-web?ext=.pdf.
  • TSI. 2016. TSI BioTrakTM Real time viable particle counter, performance qualification studies: Abridged drug master file. P/N 5001493 Rev D. Shoreview, MN.
  • United States Pharmacopeia. 2023. General Chapter, in <1223> Valication of alternative microbiological method. USP-NF. Rockville, MD.
  • Zhang, M., H. Su, G. Li, U. Kuhn, S. Li, T. Klimach, T. Hoffmann, P. Fu, U. Pöschl, and Y. Cheng. 2021. High-resolution fluorescence spectra of airborne biogenic secondary organic aerosols: Comparisons to primary biological aerosol particles and implications for single-particle measurements. Environ. Sci. Technol. 55 (24):16747–56. doi: 10.1021/acs.est.1c02536.
  • Zhang, M., T. Klimach, N. Ma, T. Könemann, C. Pöhlker, Z. Wang, U. Kuhn, N. Scheck, U. Pöschl, H. Su, et al. 2019. Size-resolved single-particle fluorescence spectrometer for real-time analysis of bioaerosols: Laboratory evaluation and atmospheric measurements. Environ. Sci. Technol. 53 (22):13257–64. doi: 10.1021/acs.est.9b01862.