309
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Relating the single particle soot photometer (SP2) signal response to soot maturity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 764-778 | Received 31 Oct 2023, Accepted 07 Mar 2024, Published online: 25 Apr 2024

References

  • Alfè, M., B. Apicella, R. Barbella, J.-N. Rouzaud, A. Tregrossi, and A. Ciajolo. 2009. Structure-property relationship in nanostructures of young and mature soot in premixed flames. Proc. Combust. Inst. 32 (1):697–704. doi: 10.1016/j.proci.2008.06.193.
  • Alfè, M., B. Apicella, J.-N. Rouzaud, A. Tregrossi, and A. Ciajolo. 2010. The effect of temperature on soot properties in premixed methane flames. Combust. Flame 157 (10):1959–1965. doi: 10.1016/j.combustflame.2010.02.007.
  • Andreae, M. O., and A. Gelencsér. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6 (10):3131–3148. doi: 10.5194/acp-6-3131-2006.
  • Apicella, B., P. Pré, J. N. Rouzaud, J. Abrahamson, R. L. V. Wal, A. Ciajolo, A. Tregrossi, and C. Russo. 2019. Laser-induced structural modifications of differently aged soot investigated by HRTEM. Combust. Flame 204:13–22. doi: 10.1016/j.combustflame.2019.02.026.
  • Bambha, R. P., and H. A. Michelsen. 2015. Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J. Aerosol Sci. 88:159–181. doi: 10.1016/j.jaerosci.2015.06.006.
  • Bladh, H., P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux. 2006. Experimental and theoretical comparison of spatially resolved laser-induced incandescence (lii) signals of soot in backward and right-angle configuration. Appl. Phys. B 83 (3):423–433. doi: 10.1007/s00340-006-2197-y.
  • Bladh, H., J. Johnsson, and P. E. Bengtsson. 2008. On the dependence of the laser-induced incandescence (lii) signal on soot volume fraction for variations in particle size. Appl. Phys. B 90 (1):109–125. doi: 10.1007/s00340-007-2826-0.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi: 10.1080/02786820500421521.
  • Cenker, E., and W. L. Roberts. 2017. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII. Appl. Phys. B 123 (3):1–10. doi: 10.1007/s00340-017-6653-7.
  • Chakrabarty, R. K., N. J. Shetty, A. S. Thind, P. Beeler, B. J. Sumlin, C. C. Zhang, P. Liu, J. C. Idrobo, K. Adachi, N. L. Wagner, et al. 2023. Shortwave absorption by wildfire smoke dominated by dark brown carbon. Nat. Geosci. 16 (8):683–688. doi: 10.1038/s41561-023-01237-9.
  • Corbin, J. C., H. Czech, D. Massabò, F. B. de Mongeot, G. Jakobi, F. Liu, P. Lobo, C. Mennucci, A. A. Mensah, J. Orasche, et al. 2019. Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. NPJ Clim. Atmos. Sci. 2 (1):1–10. doi: 10.1038/s41612-019-0069-5.
  • Corbin, J. C., and M. Gysel-Beer. 2019. Detection of tar brown carbon with a single particle soot photometer (SP2). Atmos. Chem. Phys. 19 (24):15673–15690. doi: 10.5194/acp-19-15673-2019.
  • Corbin, J. C., R. L. Modini, and M. Gysel-Beer. 2023. Mechanisms of soot-aggregate restructuring and compaction. Aerosol Sci. Technol. 57 (2):89–111. doi: 10.1080/02786826.2022.2137385.
  • Cross, E. S., T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. P. Schwarz, et al. 2010. Soot particle studies instrument inter-comparison project overview. Aerosol Sci. Technol. 44 (8):592–611. doi: 10.1080/02786826.2010.482113.
  • Eriksson, A. C., C. Wittbom, P. Roldin, M. Sporre, E. Öström, P. Nilsson, J. Martinsson, J. Rissler, E. Z. Nordin, B. Svenningsson, et al. 2017. Diesel soot aging in urban plumes within hours under cold dark and humid conditions. Sci. Rep. 7 (1):12364. doi: 10.1038/s41598-017-12433-0.
  • Gao, R. S., J. P. Schwarz, K. K. Kelly, D. W. Fahey, L. A. Watts, T. L. Thompson, J. R. Spackman, J. G. Slowik, E. S. Cross, J. H. Han, et al. 2007. A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci. Technol. 41 (2):125–135. doi: 10.1080/02786820601118398.
  • Gysel, M., M. Laborde, A. A. Mensah, J. C. Corbin, A. Keller, J. Kim, A. Petzold, and B. Sierau. 2012. Technical note: The single particle soot photometer fails to reliably detect palas soot nanoparticles. Atmos. Meas. Tech. 5 (12):3099–3107. doi: 10.5194/amt-5-3099-2012.
  • Jing. 2009. Minicast soot generator.
  • Johansson, K. O., F. El Gabaly, P. E. Schrader, M. F. Campbell, and H. A. Michelsen. 2017. Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame. Aerosol Sci. Technol. 51 (12):1333–1344. doi: 10.1080/02786826.2017.1355047.
  • Karlsson, A., S. Török, A. Roth, and P. E. Bengtsson. 2022. Numerical scattering simulations for estimating soot aggregate morphology from nephelometer scattering measurements. J. Aerosol Sci. 159:105828. doi: 10.1016/j.jaerosci.2021.105828.
  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109 (D21):1–12. doi: 10.1029/2004JD004999.
  • Laborde, M., M. Crippa, T. Tritscher, Z. Jurányi, P. F. Decarlo, B. Temime-Roussel, N. Marchand, S. Eckhardt, A. Stohl, U. Baltensperger, et al. 2013. Black carbon physical properties and mixing state in the European megacity Paris. Atmos. Chem. Phys. 13 (11):5831–5856. doi: 10.5194/acp-13-5831-2013.
  • Laborde, M., M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, et al. 2012. Single particle soot photometer intercomparison at the aida chamber. Atmos. Meas. Tech. 5 (12):3077–3097. doi: 10.5194/amt-5-3077-2012.
  • Lamb, K. D. 2019. Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning. Atmos. Meas. Tech. 12 (7):3885–3906. doi: 10.5194/amt-12-3885-2019.
  • Le, K. C., J. Henriksson, and P. E. Bengtsson. 2021. Polarization effects in Raman spectroscopy of light-absorbing carbon. J. Raman Spectroscopy 52 (6):1115–1122. doi: 10.1002/jrs.6107.
  • Le, K. C., T. Pino, V. T. Pham, J. Henriksson, S. Tӧrӧk, and P.-E. Bengtsson. 2019. Raman spectroscopy of mini-cast soot with various fractions of organic compounds: Structural characterization during heating treatment from 25 °C to 1000 °C. Combust. Flame 209:291–302. doi: 10.1016/j.combustflame.2019.07.037.
  • Liu, D., J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, et al. 2014. Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmos. Chem. Phys. 14 (18):10061–10084. doi: 10.5194/acp-14-10061-2014.
  • Liu, D., C. He, J. P. Schwarz, and X. Wang. 2020. Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. NPJ Clim. Atmos. Sci. 3 (1):1–18. doi: 10.1038/s41612-020-00145-8.
  • Liu, D., J. Whitehead, M. R. Alfarra, E. Reyes-Villegas, D. V. Spracklen, C. L. Reddington, S. F. Kong, P. I. Williams, Y. C. Ting, S. Haslett, et al. 2017. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat. Geosci. 10 (3):184–188. doi: 10.1038/ngeo2901.
  • López-Yglesias, X., P. E. Schrader, and H. A. Michelsen. 2014. Soot maturity and absorption cross sections. J. Aerosol Sci. 75:43–64. doi: 10.1016/j.jaerosci.2014.04.011.
  • Malmborg, V., A. Eriksson, L. Gren, S. Török, S. Shamun, M. Novakovic, Y. Zhang, S. Kook, M. Tunér, P.-E. Bengtsson, et al. 2021. Characteristics of BrC and BC emissions from controlled diffusion flame and diesel engine combustion. Aerosol Sci. Technol. 55 (7):769–784. doi: 10.1080/02786826.2021.1896674.
  • Malmborg, V. B., A. C. Eriksson, S. Török, Y. Zhang, K. Kling, J. Martinsson, E. C. Fortner, L. Gren, S. Kook, T. B. Onasch, et al. 2019. Relating aerosol mass spectra to composition and nanostructure of soot particles. Carbon 142:535–546. doi: 10.1016/j.carbon.2018.10.072.
  • Maricq, M. M. 2014. Examining the relationship between black carbon and soot in flames and engine exhaust. Aerosol Sci. Technol. 48 (6):620–629. doi: 10.1080/02786826.2014.904961.
  • Michelsen, H. A. 2003. Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118 (15):7012–7045. doi: 10.1063/1.1559483.
  • Michelsen, H. A., M. B. Colket, P. E. Bengtsson, A. D'Anna, P. Desgroux, B. S. Haynes, J. H. Miller, G. J. Nathan, H. Pitsch, and H. Wang. 2020. A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano 14 (10):12470–12490. doi: 10.1021/acsnano.0c06226.
  • Michelsen, H. A., C. Schulz, G. J. Smallwood, and S. Will. 2015. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51:2–48. doi: 10.1016/j.pecs.2015.07.001.
  • Migliorini, F., S. De Iuliis, R. Dondè, M. Commodo, P. Minutolo, and A. D'Anna. 2020. Nanosecond laser irradiation of soot particles: Insights on structure and optical properties. Exp. Therm. Fluid Sci. 114:110064. doi: 10.1016/j.expthermflusci.2020.110064.
  • Migliorini, F., K. A. Thomson, and G. J. Smallwood. 2011. Investigation of optical properties of aging soot. Appl. Phys. B 104 (2):273–283. doi: 10.1007/s00340-011-4396-4.
  • Moteki, N., K. Adachi, S. Ohata, A. Yoshida, T. Harigaya, M. Koike, and Y. Kondo. 2017. Anthropogenic iron oxide aerosols enhance atmospheric heating. Nat. Commun. 8 (1):15329. doi: 10.1038/ncomms15329.
  • Moteki, N., and Y. Kondo. 2007. Effects of mixing state on black carbon measurements by laser-induced incandescence. Aerosol Sci. Technol. 41 (4):398–417. doi: 10.1080/02786820701199728.
  • Moteki, N., and Y. Kondo. 2008. Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam. J. Aerosol Sci. 39 (4):348–364. doi: 10.1016/j.jaerosci.2007.12.002.
  • Moteki, N., and Y. Kondo. 2010. Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation. Aerosol Sci. Technol. 44 (8):663–675. doi: 10.1080/02786826.2010.484450.
  • Moteki, N., Y. Kondo, and K. Adachi. 2014. Identification by single-particle soot photometer of black carbon particles attached to other particles: Laboratory experiments and ground observations in Tokyo. JGR. Atmospheres 119 (2):1031–1043. doi: 10.1002/2013JD020655.
  • Olofsson, N.-E., J. Simonsson, S. Török, H. Bladh, and P.-E. Bengtsson. 2015. Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering. Appl. Phys. B 119 (4):669–683. doi: 10.1007/s00340-015-6067-3.
  • Park, K., D. B. Kittelson, and P. H. McMurry. 2004. Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol Sci. Technol. 38 (9):881–889. doi: 10.1080/027868290505189.
  • Russo, C., and A. Ciajolo. 2015. Effect of the flame environment on soot nanostructure inferred by Raman spectroscopy at different excitation wavelengths. Combust. Flame 162 (6):2431–2441. doi: 10.1016/j.combustflame.2015.02.011.
  • Schulz, C., B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood. 2006. Laser-induced incandescence: Recent trends and current questions. Appl. Phys. B 83 (3):333–354. doi: 10.1007/s00340-006-2260-8.
  • Schwarz, J. P., R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbeheshti, D. G. Baumgardner, G. L. Kok, et al. 2006. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res. 111 (D16):1–15. doi: 10.1029/2006JD007076.
  • Schwarz, J. P., J. R. Spackman, R. S. Gao, A. E. Perring, E. Cross, T. B. Onasch, A. Ahern, W. Wrobel, P. Davidovits, J. Olfert, et al. 2010. The detection efficiency of the single particle soot photometer. Aerosol Sci. Technol. 44 (8):612–628. doi: 10.1080/02786826.2010.481298.
  • Sedlacek, A. J., T. B. Onasch, L. Nichman, E. R. Lewis, P. Davidovits, A. Freedman, and L. Williams. 2018. Formation of refractory black carbon by SP2-induced charring of organic aerosol. Aerosol Sci. Technol. 52 (12):1345–1350. doi: 10.1080/02786826.2018.1531107.
  • Slowik, J. G., E. S. Cross, J. H. Han, P. Davidovits, T. B. Onasch, J. T. Jayne, L. R. WilliamS, M. R. Canagaratna, D. R. Worsnop, R. K. Chakrabarty, et al. 2007. An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Technol. 41 (3):295–314. doi: 10.1080/02786820701197078.
  • Stephens, M., N. Turner, and J. Sandberg. 2003. Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt. 42 (19):3726–3736. doi: 10.1364/ao.42.003726.
  • Szopa, S., V. Naik, B. Adhikary, P. Artaxo, T. Berntsen, W. D. Collins, S. Fuzzi, L. Gallardo, A. Kiendler-Scharr, Z. Klimont, et al. 2021. Short-lived climate forcers. Climate change 2021: The physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, L. G. Y. Chen, M. I. Gomis, M. Huang, et al., 817–922. Cambridge; New York, NY: Cambridge University Press.
  • Török, S., V. B. Malmborg, J. Simonsson, A. Eriksson, J. Martinsson, M. Mannazhi, J. Pagels, and P. E. Bengtsson. 2018. Investigation of the absorption angstrom exponent and its relation to physicochemical properties for mini-cast soot. Aerosol Sci. Technol. 52 (7):757–767. doi: 10.1080/02786826.2018.1457767.
  • Török, S., M. Mannazhi, and P. E. Bengtsson. 2021. Laser-induced incandescence (2 lambda and 2c) for estimating absorption efficiency of differently matured soot. Appl. Phys. B 127 (7):1–10. doi: 10.1007/s00340-021-07638-1.
  • Török, S., M. Mannazhi, S. Bergqvist, K. C. Le, and P. E. Bengtsson. 2022. Influence of rapid laser heating on differently matured soot with double-pulse laser-induced incandescence. Aerosol Sci. Technol. 56 (6):488–501. doi: 10.1080/02786826.2022.2046689.
  • Vander Wal, R. L., and M. Y. Choi. 1999. Pulsed laser heating of soot: Morphological changes. Carbon 37 (2):231–239. doi: 10.1016/s0008-6223(98)00169-9.
  • Vander Wal, R. L., T. M. Ticich, and A. B. Stephens. 1998. Optical and microscopy investigations of soot structure alterations by laser-induced incandescence. Appl. Phys. B Lasers Opt. 67 (1):115–123. doi: 10.1007/s003400050483.
  • Wal, R. L. V., and A. J. Tomasek. 2004. Soot nanostructure: Dependence upon synthesis conditions. Combust. Flame 136 (1–2):129–140. doi: 10.1016/j.combustflame.2003.09.008.
  • Yoshida, A., N. Moteki, S. Ohata, T. Mori, R. Tada, P. Dagsson-Waldhauserová, and Y. Kondo. 2016. Detection of light-absorbing iron oxide particles using a modified single-particle soot photometer. Aerosol Sci. Technol. 50 (3):1–4. doi: 10.1080/02786826.2016.1146402.
  • Yuan, J., R. L. Modini, M. Zanatta, A. B. Herber, T. Müller, B. Wehner, L. Poulain, T. Tuch, U. Baltensperger, and M. Gysel-Beer. 2021. Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter. Atmos. Chem. Phys. 21 (2):635–655. doi: 10.5194/acp-21-635-2021.
  • Zanatta, M., S. Mertes, O. Jourdan, R. Dupuy, E. Järvinen, M. Schnaiter, O. Eppers, J. Schneider, Z. Jurányi, and A. Herber. 2023. Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the arctic summer. Atmos. Chem. Phys. 23 (14):7955–7973. doi: 10.5194/acp-23-7955-2023.