371
Views
19
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Biomass, stem basic density and expansion factor functions for five exotic conifers grown in Denmark

&
Pages 135-153 | Received 20 Jan 2014, Accepted 06 Nov 2014, Published online: 10 Dec 2014

References

  • Aravanopoulos FA. 2010. Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenergy. 34:1531–1537. 10.1016/j.biombioe.2010.06.012
  • Bancalari MAE, Perry, DA. 1987. Distribution and increment of biomass in adjacent young Douglas-fir stands with different early growth rates. Can J For Res. 17:722–730. 10.1139/x87-115
  • Barclay HJ, Pang PC, Pollard DFW. 1986. Aboveground biomass distribution within trees and stands in thinned and fertilized Douglas-fir. Can J For Res. 16:438–442. 10.1139/x86-080
  • Bartelink HH. 1996. Allometric relationships on biomass and needle area of Douglas-fir. For Ecol Manage. 86:193–203. 10.1016/S0378-1127(96)03783-8
  • Bergstedt A, Larsen JB. 1998. Vedkvalitet hos grandis: Hvordan kan den påvirkes gennem skovdyrkningen? [Wood quality in grand fir: how can it be affected through forest management?] In: Rasmussen JN, editor. Copenhagen: Center for Forest, Landscape and Planning; p. 51–57.
  • Börjesson P, Gustavsson L. 2000. Greenhouse gas balances in building construction: wood versus concrete from lifecycle and forest land-use perspectives. Energy Policy. 28:575–588.
  • Börjesson P, Gustavsson L, Christersson L, Linder S. 1997. Future production and utilization of biomass in Sweden: potentials and CO2 mitigation. Biomass Bioenergy. 13:399–412.
  • Bormann BT. 1990. Diameter-based biomass regression models ignore large sapwood-related variation in Sitka spruce. Can J For Res. 20:1098–1104. 10.1139/x90-145
  • Brazier JD. 1970. The effect of spacing on the wood density and wood yields of Sitka spruce. For Suppl. 22–28.
  • Brown JK. 1978. Weight and density of crowns of Rocky Mountains conifers. Research Paper INT-197. USDA Forest Service; Oregon (OR).
  • Brown S, Gillespie AJR, Lugo AE. 1989. Biomass estimation methods for tropical forests with application to forest inventory data. For Sci. 35:881–902.
  • Carvalho JP, Parresol BR. 2003. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd). For Ecol Manage. 179:269–276.
  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145:87–99. 10.1007/s00442-005-0100-x
  • Clair JBS. 1993. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii). For Sci. 39:743–755.
  • Ericsson K, Nilsson LJ. 2006. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy. 30:1–15. 10.1016/j.biombioe.2005.09.001
  • Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J. 2007. Integrated carbon analysis of forest management practices and wood substitution. Can J For Res. 37:671–681. 10.1139/X06-257
  • European Parliament and the European Commission. 2009. Directive 2009/28/EC of the European parliament and the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Tech. rep. Luxembourg: European Parliament and the European Commission; p. 483.
  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, et al. 2012. Tree height integrated into pan-tropical forest biomass estimates. Biogeosciences Discuss. 9:2567–2622.
  • Feller MC. 1992. Generalized versus site-specific biomass regression equations for Pseudotsuga menziesii var. menziesii and Thuja plicata in Coastal British Columbia. Bioresour Technol. 39:9–16. 10.1016/0960-8524(92)90050-8
  • Forest Products Laboratory. 1965. Western wood density survey. U.S. Forest Service Research Paper FPL-27, Forest Products Laboratory, Madison (WI).
  • Gardiner B, Leban J-M, Auty D, Simpson H. 2011. Models for predicting wood density of British-grown Sitka spruce. Forestry. 84:119–132. 10.1093/forestry/cpq050
  • Gasparini P, Nocetti M, Tabacchi G, Tosi V. 2005. Biomass equations and data for forest stands and shrublands of the Eastern Alps (Trentino, Italy). In: Reynolds KM, editor, IUFRO conference on sustainable forestry in theory and practice. Portland (OR): Gen. Tech. Rep. PNW-688, Department of Agriculture, Forest Service, Pacific Northwest Research Station; p. 119–132.
  • Geyer WA. 2006. Biomass production in the Central Great Plains USA under various coppice regimes. Biomass Bioenergy. 30:778–783.
  • Gholz HL, Grier CC, Campbell AG, Brown AT. 1979. Equations for estimating biomass and leaf area of plants in the Pacific Northwest. Research Paper 41. Forest Research Lab; Corvallis (OR), p. 36.
  • Gower ST, Grier CC, Vogt DJ, Vogt KA. 1987. Allometric relations of deciduous (Larix occidentalis) and evergreen conifers (Pinus contorta and Pseudotsuga menziesii) of the Cascade Mountains in central Washington. Can J For Res. 17:630–634. 10.1139/x87-103
  • Gower ST, Reich PB, Son Y. 1993. Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree physiol. 12:327–345. 10.1093/treephys/12.4.327
  • Gower ST, Vogt KA, Grier CC. 1992. Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecol Monogr. 62:43–65. 10.2307/2937170
  • Gustavsson L, Börjesson P, Johansson B, Svenningsson P. 1995. Reducing CO2 emissions by substituting biomass for fossil fuels. Energy. 20:1097–1113. 10.1016/0360-5442(95)00065-O
  • Gustavsson L, Sathre R. 2006. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build Environ. 41:940–951. 10.1016/j.buildenv.2005.04.008
  • Harmon ME, Ferrel WK, Franklin JF. 1990. Effects on carbon storage of conversion of old growth forests to young forests. Science. 247:699–702. 10.1126/science.247.4943.699
  • Hees A. 2001. Biomass development in unmanaged forests. Ned Bosbouwtijdschrift. 73:2–5.
  • Helgerson OT, Cromack K, Stafford S, Miller RE, Slagle R. 1988. Equations for estimating aboveground components of young Douglas-fir and red alder in a coastal Oregon plantation. Can J For Res. 18:1082–1085. 10.1139/x88-164
  • Henry M, Bombelli A, Trotta C, Alessandrini A, Birigazzi L, Sola G, Vieilledent G, Santenoise P, Longuetaud F, Valentini R, et al. 2013. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iForest – Biogeosci For. 6:326–330. 10.3832/ifor0901-006
  • IPCC. 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Hayama: Institute for Global Environmental Strategies (IGES).
  • Jenkins J, Chojnacky D, Heath L, Birdsey RA. 2004. Comprehensive database of diameter-based biomass regressions for North American tree species. General Technical Report NE-319. Washington (DC): US Forest Service; p. 45.
  • Johannsen VK, Nord-Larsen T, Riis-Nielsen T, Suadicani K, Jørgensen BB. 2013. Skove og plantager 2012 [Forests and plantations]. Frederiksberg: Skov og Landskab.
  • Johansson T. 2013. Biomass equations for hybrid larch growing on farmland. Biomass Bioenergy 49:152–159. 10.1016/j.biombioe.2012.12.020
  • Johnson E. 2009. Goodbye to carbon neutral: getting biomass footprints right. Environ Impact Assess Rev. 29:165–168. 10.1016/j.eiar.2008.11.002
  • Kallio AMI, Salminen O, Sievänen R. 2013. Sequester or substitute – consequences of increased production of wood based energy on the carbon balance in Finland. J For Econom. 19:402–415. 10.1016/j.jfe.2013.05.001
  • Ker MF. 1980. Tree biomass equations for seven species in southwestern New Brunswick. Report M-X-114. Fredericton: Maritimes Forest Research Centre, Canadian Forestry Service, Environment; 18 pp.
  • Kirmse RD, Fisher JT. 1989. Species screening and biomass trials of woody plants in the semi-arid southwest United States. Biomass. 18:15–29. 10.1016/0144-4565(89)90078-4
  • Kozak A. 1970. Methods for ensuring additivity of biomass components by regression analysis. For Chron. 46:402–405. Available from: http://dx.doi.org/10.5558/tfc46402-5
  • Laing FM. 1985. Species trials for biomass production on abandoned farmland. North J Appl For. 2:43–47.
  • Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manage. 188:211–224. 10.1016/j.foreco.2003.07.008
  • Levy PE, Hale SE, Nicoll BC. 2004. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry. 77:421–430. 10.1093/forestry/77.5.421
  • Lorenz K, Lal R. 2010. Carbon sequestration in forest ecosystems. London: Springer.
  • Madsen SF. 1987. Volume equations for some important Danish forest tree species. Det Forstlige Forsøgsvæsen. 40:47–242.
  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature. 447:849–851. 10.1038/nature05847
  • Mantau U, Saal U, Prins K, Steierer F, Lindner M, Verkerk H, Eggers J, Leek N, Oldenburger J, Asikainen A, Anttila P. 2010. EUwood – Real potential for changes in growth and use of EU forests. Final report. Hamburg: University of Hamburg; p. 160.
  • Marshall P, Wang Y. 1995. Above ground tree biomass of interior uneven-aged Douglas-fir stands. Canada-British Columbia Partnership Agreement on Forest Resource Development: FRDA II. Working Paper WPlS-003.University of British Columbia; Vancouver, 23 pp.
  • Means J, Hansen H, Koerper G, Alaback P, Klopsch M. 1994. Software for computing plant biomass – BIOPAK users guide. General Technical Report PNW-GTR-340. Portland (OR): US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Moltesen P. 1988. Skovtrærnes ved og dets anvendelse [Wood of forest trees and it's use]. Technical report. Copenhagen: Skovteknisk Institut; 132 pp.
  • Muukkonen P, Mäkipää R. 2006. Biomass equations for European trees: addendum. Silva Fennica. 40:763–773. 10.14214/sf.475
  • Newell JP, Vos RO. 2012. Accounting for forest carbon pool dynamics in product carbon footprints: challenges and opportunities. Environ Impact Assess Rev. 37:23–36. 10.1016/j.eiar.2012.03.005
  • Nord-Larsen T, Meilby H, Skovsgaard JP. 2009. Site-specific height growth models for six common tree species in Denmark. Scand J For Res. 24:194–204. 10.1080/02827580902795036
  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, et al. 2011. A large and persistent carbon sink in the world's forests. Science. 333:988–993. 10.1126/science.1201609
  • Parresol BR. 2001. Additivity of nonlinear biomass equations. Can J For Res. 31:865–878. 10.1139/x00-202
  • Parresol BR, Thomas CE. 2014. Econometric modeling of sweetgum stem biomass using the IML and SYSLIN procedures; [cited 2014 Sep 14]. Available from: http://www.sascommunity.org/sugi/SUGI91
  • Petty JA, MacMillan DC, Steward CM. 1990. Variation of density and growth ring width in stems of Sitka and Norway spruce. Forestry. 63:39–49. 10.1093/forestry/63.1.39
  • Polman JE, Militz H. 1996. Wood quality of Douglas fir (Pseudotsuga menziesii (Mirb) franco) from three stands in the Netherlands. Ann For Sci. 53:1127–1136. 10.1051/forest:19960607
  • Ruiz-Peinado R, del Rio M, Montero G. 2011. New models for estimating the carbon sink capacity of Spanish softwood species. For Syst. 20:176–188. 10.5424/fs/2011201-11643
  • Savill PS, Sandels AJ. 1983. The influence of early respacing on the wood density of Sitka Spruce. Forestry. 56:109–120.
  • Simpson HL, Denne MP. 1997. Variation of ring width and specific gravity within trees from unthinned Sitka spruce spacing trial in Clocaenog, North Wales. Forestry. 70:31–45.
  • Skovsgaard JP, Bald C, Nord-Larsen T. 2011. Functions for biomass and basic density of the stem, the crown and the below-ground stump and root system of Norway spruce (Picea abies (L.) Karst.) in Denmark. Scand J For Res. 26:3–20.
  • Skovsgaard JP, Nord-Larsen T. 2011. Biomass, basic density and biomass expansion factor functions for European beech (Fagus sylvatica L.) in Denmark. Eur J For Res. 12:1035–1053.
  • Snell JAK, Brown JK. 1978. Notes: comparison of tree biomass estimators–DBH and sapwood area. For Sci. 24: 455–457.
  • Standish JT, Manning GH, Demaerschalk JP. 1985. Development of biomass equations for British Columbia tree species. Information report BC-X-264. Victoria (BC): Canadian Forestry Service, Pacific Forest Research Centre; 48 pp.
  • Tabacchi G, Cosmo LD, Gasparini P. 2011. Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur J For Res. 130:911–934.
  • Teobaldelli M, Somogyi Z, Migliavacca M, Usoltsev VA. 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For Ecol Manage. 257: 1004–1013.
  • Ter-Mikaelian MT, Korzukhin MD. 1997. Biomass equations for sixty-five North American tree species. For Ecol Manage. 97:1–24.
  • Upton B, Miner R, Spinney M, Heath LS. 2008. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy. 32:1–10.
  • Wright SP. 2014. Multivariate analysis using the mixed procedure; [cited 2014 Sep 14]. Available from: http://www2.sas.com/proceedings/sugi23/Stats/p229.pdf
  • Zečić Z, Vusić D, Štimac Z, Cvekan M, Šimić A. 2011. Aboveground biomass of silver fir, European larch and black pine. Croat J For Eng. 32:639–377.
  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monogr. 4:1–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.