370
Views
17
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Modeling and predicting aboveground biomass change in young forest using multi-temporal airborne laser scanner data

, , &
Pages 458-469 | Received 12 May 2014, Accepted 26 Feb 2015, Published online: 26 Mar 2015

References

  • Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Automat Control. 19:716–723.
  • Bollandsås OM, Gregoire T, Næsset E, Øyen B-H. 2013. Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data. Stat Methods Appl. 22:113–129.
  • Bollandsås OM, Rekstad I, Næsset E, Rosberg I. 2009. Models for predicting above-ground biomass of Betula pubescens spp. czerepanovii in mountain areas of southern Norway. Scand J For Res. 24:318–332.
  • Burbidge JB, Magee L, Robb AL. 1988. Alternative transformations to handle extreme values of the dependent variable. J Am Stat Assoc. 83:123–127. 10.1080/01621459.1988.10478575
  • Canadell JG, Kirschbaum MUF, Kurz WA, Sanz M-J, Schlamadinger B, Yamagata Y. 2007. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ Sci Policy. 10:370–384. 10.1016/j.envsci.2007.01.009
  • Chambers JM, Hastie T. 1992. Statistical models in S. Pacific Grove (CA): Wadsworth & Brooks/Cole Advanced Books & Software.
  • FAO. 2010. Global forest resources assessment 2010: main report. FAO forestry paper, vol. 163. Rome: Food and Agriculture Organization of the United Nations.
  • Fisher RA. 1921. Some remarks on the methods formulated in a recent article on “The quantitative analysis of plant growth”. Ann Appl Biol. 7:367–372. 10.1111/j.1744-7348.1921.tb05524.x
  • Gobakken T, Næsset E. 2004. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data. Scand J For Res. 19:529–542. 10.1080/02827580410019454
  • GOFC/GOLD. 2014. A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation (GOFC-GOLD Report version COP20-1. GOFC-GOLD Land Cover Project Office). Wageningen (The Netherlands): Wageningen University.
  • Goldberger AS. 1968. The interpretation and estimation of Cobb–Douglas functions. Econometrica. 36:464–472. 10.2307/1909517
  • Gregoire TG, Lin QF, Boudreau J, Nelson R. 2008. Regression estimation following the square-root transformation of the response. For Sci. 54:597–606.
  • Hopkinson C, Chasmer L, Hall RJ. 2008. The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets. Remote Sens Environ. 112:1168–1180. 10.1016/j.rse.2007.07.020
  • Marklund LG. 1988. Biomassafunktioner för tall, gran och björk i Sverige [Biomass functions for pine, spruce and birch in Sweden (Report 45)]. Umeå: Department of Forest Survey, Swedish University of Agricultural Sciences. Swedish with Summary in English.
  • McRoberts RE, Bollandsås OM, Næsset E. 2014. Modeling and estimating change. In: Maltamo M, Næsset E, Vauhkonen J, editors. Forestry applications of airborne laser scanning – concepts and case studies. Dordrecht (Netherlands): Springer; p. 293–313.
  • McRoberts RE, Cohen WB, Næsset E, Stehman SV, Tomppo EO. 2010. Using remotely sensed data to construct and assess forest attribute maps and related spatial products. Scand J For Res. 25:340–367. 10.1080/02827581.2010.497496
  • Morsdorf F, Kötz B, Meier E, Itten KI, Allgöwer B. 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ. 104:50–61. 10.1016/j.rse.2006.04.019
  • Næsset E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ. 80:88–99.
  • Næsset E. 2004a. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res. 19:164–179.
  • Næsset E. 2004b. Estimation of above- and below-ground biomass in boreal forest ecosystems. In: Thies M, Koch B, Spiecker H, Weinacker H, edtiors. Proceedings of the ISPRS working group VIII/2 Laser-scanners for forest and landscape assessment; 2004 October 3–6; Freiburg (Germany); International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVI, Part 8/W2; p. 145–148.
  • Næsset E. 2009. Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ. 113:148–159.
  • Næsset E. 2011. Estimating above-ground biomass in young forests with airborne laser scanning. Int J Remote Sens. 32:473–501.
  • Næsset E, Bjerknes KO. 2001. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sens Environ. 78:328–340.
  • Næsset E, Bollandsås OM, Gobakken T, Gregoire TG, Ståhl G. 2013. Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: a case study with post-stratification to provide “activity data”. Remote Sens Environ. 128:299–314.
  • Næsset E, Gobakken T. 2005. Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sens Environ. 96:453–465.
  • Næsset E, Gobakken T. 2008. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ. 112:3079–3090.
  • Næsset E, Gobakken T, Solberg S, Gregoire TG, Nelson R, Stahl G, Weydahl D. 2011. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area. Remote Sens Environ. 115:3599–3614.
  • Næsset E, Nelson R. 2007. Using airborne laser scanning to monitor tree migration in the boreal–alpine transition zone. Remote Sens Environ. 110:357–369.
  • Nyström M, Holmgren J, Olsson H. 2013. Change detection of mountain birch using multi-temporal ALS point clouds. Remote Sens Lett. 4:190–199.
  • Ørka HO, Næsset E, Bollandsås OM. 2010. Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sens Environ. 114:1445–1461.
  • Plugge D, Baldauf T, Rakoto Ratsimba H, Rajoelison G, Köhl M. 2010. Combined biomass inventory in the scope of REDD (Reducing Emissions from Deforestation and Forest Degradation). Madag Conserv Dev. 5:23–34.
  • R Development Core Team. 2009. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 409 p.
  • Richards FJ. 1959. A flexible growth function for empirical use. J Exp Bot. 10:290–301. 10.1093/jxb/10.2.290
  • Snowdon P. 1991. A ratio estimator for bias correction in logarithmic regressions. Can J For Res. 21:720–724. 10.1139/x91-101
  • St-Onge B, Vepakomma U. 2004. Assessing forest gap dynamics and growth using multi-temporal laser-scanner data. Int Photogram Remote Sens Spatial Inf Sci. XXXVI:173–178.
  • Thieme N, Bollandsås OM, Gobakken T, Næsset E. 2011. Detection of small single trees in the forest–tundra ecotone using height values from airborne laser scanning. Can J Remote Sens. 37:264–274. 10.5589/m11-041
  • UNFCCC. 2008. Kyoto Protocol reference manual on accounting of emissions and assigned amounts [cited 2015 Mar 15]. Available from: http://unfccc.int/kyoto_protocol/items/3145.php
  • Yu X, Hyyppa J, Kaartinen H, Maltamo M, Hyyppa H. 2008. Obtaining plotwise mean height and volume growth in boreal forests using multi-temporal laser surveys and various change detection techniques. Int J Remote Sens. 29:1367–1386. 10.1080/01431160701736489

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.