529
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Modeling individual tree height growth of Norway spruce and Scots pine from national forest inventory data in Norway

&
Pages 501-514 | Received 27 May 2016, Accepted 04 Dec 2016, Published online: 22 Dec 2016

References

  • Anton-Fernandez C, Burkhart HE, Strub M, Amateis RL. 2011. Effects of initial spacing on height development of Loblolly pine. For Sci. 57:201–211.
  • Bachmann M. 1998. Indizes zur Erfassung der Konkurrenz von Einzelbäumen: Methodische Untersuchungen in Bergmischwäldern. Forstliche Forschungsberichte München. 171:1–245.
  • Biging GS, Dobbertin M. 1992. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci. 38:695–720.
  • Biging GS, Dobbertin M. 1995. Evaluation of competition indexes in individual tree growth models. For Sci. 41:360–377.
  • Bøhler F, Brunner A, Øyen B-H. 2008. Toppkapping i ungskogpleie av gran: Vekstreaksjoner på toppkappede trær. Forskning fra Skog og landskap, vol 4/08. Skog og Landskap, Ås.
  • Bollandsås OM, Næsset E. 2009. Weibull models for single-tree increment of Norway spruce, Scots pine, birch and other broadleaves in Norway. Scand J For Res. 24:54–66. doi: 10.1080/02827580802477875
  • Boyden S, Binkley D, Stape JL. 2008. Competition among eucalyptus trees depends on genetic variation and resource supply. Ecology. 89:2850–2859. doi: 10.1890/07-1733.1
  • Braastad H. 1983. Forholdet mellom høydebonitet og produksjonsevne for gran, furu og bjørk på samme voksested. Aktuelt fra Statens Fagtjeneste for Landbruket. 3:50–59.
  • Brunner A, Nigh G. 2000. Light absorption and bole volume growth of individual Douglas-fir trees. Tree Phys. 20:323–332. doi: 10.1093/treephys/20.5-6.323
  • Canham CD, LePage PT, Coates KD. 2004. A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res. 34:778–787. doi: 10.1139/x03-232
  • Cao QV. 2000. Prediction of annual diameter growth and survival for individual trees from periodic measurements. For Sci. 46:127–131.
  • Condes S, Sterba H. 2008. Comparing an individual tree growth model for Pinus halepensis Mill. in the Spanish region of Murcia with yield tables gained from the same area. Eur J For Res. 127:253–261. doi: 10.1007/s10342-007-0201-7
  • Contreras MA, Affleck D, Chung W. 2011. Evaluating tree competition indices as predictors of basal area increment in western Montana forests. For Ecol Manage. 262:1939–1949. doi: 10.1016/j.foreco.2011.08.031
  • Courbaud B, Houllier F, Rupe C. 1993. Un modèle de croissance en hauteur des arbres en pessière pure irrégulière de montagne. Ann Sci For. 50:337–351. doi: 10.1051/forest:19930402
  • Eid T, Tuhus E. 2001. Models for individual tree mortality in Norway. For Ecol Manage. 154:69–84. doi: 10.1016/S0378-1127(00)00634-4
  • Filipescu CN, Comeau PG. 2007. Aspen competition affects light and white spruce growth across several boreal sites in western Canada. Can J For Res. 37:1701–1713. doi: 10.1139/X07-011
  • Gizachew B, Brunner A. 2011. Density-growth relationships in thinned and unthinned Norway spruce and Scots pine stands in Norway. Scand J For Res. 26:543–554. doi: 10.1080/02827581.2011.611477
  • Gobakken T, Lexerod NL, Eid T. 2008. T: A forest simulator for bioeconomic analyses based on models for individual trees. Scand J For Res. 23:250–265. doi: 10.1080/02827580802050722
  • Goelz JCG, Burk TE. 1996. Measurement error causes bias in site index equations. Can J For Res. 26:1585–1593. doi: 10.1139/x26-178
  • Haefner JW, Poole GC, Dunn PV, Decker RT. 1991. Edge effects in computer models of spatial competition. Ecol Modell. 56:221–244. doi: 10.1016/0304-3800(91)90201-B
  • Hann DW, Ritchie MW. 1988. Height growth rate of Douglas-fir: a comparison of model forms. For Sci. 34:165–175.
  • Hasenauer H, Monserud RA. 1997. Biased predictions for tree height increment models developed from smoothed ‘data’. Ecol Model. 98:13–22. doi: 10.1016/S0304-3800(96)01933-3
  • Hegyi F. 1974. A simulation model for managing jack-pine stands. In: J Fries, editor. Growth models for tree and stand simulation. Stockholm: Royal College of Forestry; p. 74–90.
  • Huang SM, Titus SJ. 1999. An individual tree height increment model for mixed white spruce-aspen stands in Alberta, Canada. For Ecol Manage. 123:41–53. doi: 10.1016/S0378-1127(99)00015-8
  • Hynynen J, Ojansuu R. 2003. Impact of plot size on individual-tree competition measures for growth and yield simulators. Can J For Res. 33:455–465. doi: 10.1139/x02-173
  • Kangas AS. 1998. Effect of errors-in-variables on coefficients of a growth model and on prediction of growth. For Ecol Manage. 102:203–212. doi: 10.1016/S0378-1127(97)00161-8
  • Lappi J. 2005. Plot size related measurement error bias in tree growth models. Can J For Res. 35:1031–1040. doi: 10.1139/x05-019
  • Ledermann T. 2010. Evaluating the performance of semi-distance-independent competition indices in predicting the basal area growth of individual trees. Can J For Res. 40:796–805. doi: 10.1139/X10-026
  • Ledermann T, Eckmüllner O. 2004. A method to attain uniform resolution of the competition variable Basal-Area-in-Larger trees (BAL) during forest growth projections of small plots. Ecol Modell. 171:195–206. doi: 10.1016/j.ecolmodel.2003.08.005
  • Ledermann T, Stage AR. 2001. Effects of competitor spacing in individual-tree indices of competition. Can J For Res. 31:2143–2150. doi: 10.1139/x01-153
  • Lin JY. 1974. Stand growth simulation models for Douglas-fir and western hemlock in the northwestern United States. In: J Fries, editor. Growth models for tree and stand simulation. Stockholm: Royal College of Froestry; p. 102–118.
  • MacFarlane D, Green J, Burkhart HE. 2000. Population density influences assessment and application of site index. Can J For Res. 30:1472–1475. doi: 10.1139/x00-079
  • Mailly D, Turbis S, Pothier D. 2003. Predicting basal area increment in a spatially explicit, individual tree model: a test of competition measures with black spruce. Can J For Res. 33:435–443. doi: 10.1139/x02-122
  • Mäkinen H, Isomäki A. 2004. Thinning intensity and growth of Scots pine stands in Finland. For Ecol Manage. 201:311–325. doi: 10.1016/j.foreco.2004.07.016
  • Martin-Benito D, Gea-Izquierdo G, del Rio M, Canellas I. 2008. Long-term trends in dominant-height growth of black pine using dynamic models. For Ecol Manage. 256:1230–1238. doi: 10.1016/j.foreco.2008.06.024
  • Martin GL, Ek AR. 1984. A comparison of competition measures and growth models for predicting plantation red pine diameter and height growth. For Sci. 30:731–743.
  • Martin GL, Ek AR, Monserud RA. 1977. Control of plot edge bias in forest stand growth simulation models. Can J For Res. 7:100–105. doi: 10.1139/x77-014
  • Miina J, Pukkala T. 2000. Using numerical optimization for specifying individual-tree competition models. For Sci. 46:277–283.
  • Miina J, Pukkala T. 2002. Application of ecological field theory in distance-dependent growth modelling. For Ecol Manage. 161:101–107. doi: 10.1016/S0378-1127(01)00489-3
  • Mitchell KJ. 1975. Dynamics and simulated yield of Douglas-fir. For Sci Monograph. 17:39.
  • Monserud RA, Sterba H. 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For Ecol Manage. 80:57–80. doi: 10.1016/0378-1127(95)03638-5
  • Nigh GD. 1995. The geometric mean regression line – a method for developing site index conversion equations for species in mixed stands. For Sci. 41:84–98.
  • Nilsson U, Ekö P-M, Elfving B, Fahlvik N, Johansson U, Karlsson K, Lundmark T, Wallentin C. 2010. Thinning of Scots pine and Norway spruce monocultures in Sweden: effects of different thinning programmes on stand level gross- and net stem volume production. Studia Forestalia Suecica. 219:1–46.
  • Nord-Larsen T. 2006. Modeling individual-tree growth from data with highly irregular measurement intervals. For Sci. 52:198–208.
  • Nord-Larsen T, Damgaard C, Weiner J. 2006. Quantifying size-asymmetric growth among individual beech trees. Can J For Res. 36:418–425. doi: 10.1139/x05-255
  • Peltoniemi M, Makipaa R. 2011. Quantifying distance-independent tree competition for predicting Norway spruce mortality in unmanaged forests. For Ecol Manage. 261:30–42. doi: 10.1016/j.foreco.2010.09.019
  • Pommerening A, Lemay V, Stoyan D. 2011. Model-based analysis of the influence of ecological processes on forest point pattern formation – a case study. Ecol Modell. 222:666–678. doi: 10.1016/j.ecolmodel.2010.10.019
  • Pretzsch H. 2009. Forest dynamics, growth and yield Berlin. Heidelberg: Springer-Verlag.
  • Pretzsch H, Biber P. 2010. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res. 40:370–384. doi: 10.1139/X09-195
  • Pretzsch H, Biber P, Ďurský J. 2002. The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage. 162:3–21. doi: 10.1016/S0378-1127(02)00047-6
  • Pukkala T. 1989. Methods to describe the competition process in a tree stand. Scand J For Res. 4:187–202. doi: 10.1080/02827588909382557
  • Pukkala T. 1990. A method for incorporating the within-stand variation into forest management planning. Scand J For Res. 5:263–275. doi: 10.1080/02827589009382611
  • Pukkala T, Kolström T. 1987. Competition indices and the prediction of radial growth in Scots pine. Silv Fenn. 21:55–67.
  • Pukkala T, Lähde E, Laiho O. 2011. Using optimization for fitting individual-tree growth models for uneven-aged stands. Eur J For Res. 130:829–839. doi: 10.1007/s10342-010-0475-z
  • Richards M, McDonald AJS, Aitkenhead MJ. 2008. Optimisation of competition indices using simulated annealing and artificial neural networks. Ecol Modell. 214:375–384. doi: 10.1016/j.ecolmodel.2008.03.008
  • Ritchie MW, Hann DW. 1986. Development of a tree height growth model for Douglas-fir. For Ecol Manage. 15:135–145. doi: 10.1016/0378-1127(86)90142-8
  • Rivas JJC, González JGA, Aguirre O, Hernández F. 2005. The effect of competition on individual tree basal area growth in mature stands of Pinus cooperi Blanco in Durango (Mexico). Eur J For Res. 124:133–142. doi: 10.1007/s10342-005-0061-y
  • Sabatia CO, Burkhart HE. 2012. Competition among loblolly pine trees: Does genetic variability of the trees in a stand matter? For Ecol Manage. 263:122–130. doi: 10.1016/j.foreco.2011.09.009
  • Seynave I, Gégout J-C, Hervé J-C, Dhôte J-F, Drapier J, Bruno É, Dumé G. 2005. Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can J For Res. 35:1669–1678. doi: 10.1139/x05-088
  • Sharma R, Brunner A, Eid T. 2012. Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway. Scand J For Res. 27:619–636. doi: 10.1080/02827581.2012.685749
  • Sharma RP, Brunner A, Eid T, Øyen BH. 2011. Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. For Ecol Manage. 262:2162–2175. doi: 10.1016/j.foreco.2011.07.037
  • Stage AR, Ledermann T. 2008. Effects of competitor spacing in a new class of individual-tree indices of competition: semi-distance-independent indices computed for Bitterlich versus fixed-area plots. Can J For Res. 38:890–898. doi: 10.1139/X07-192
  • Stage AR, Wykoff WR. 1998. Adapting distance-independent forest growth models to represent spatial variability: effects of sampling design on model coefficients. For Sci. 44:224–238.
  • Tomter SM. 2000. Skog 2000. Statistikk over skogforhold og -ressurser i Norge. [Statistics of forest conditions and resources in Norway.] Ås: Norsk Institutt for jord- og skogkartlegging.
  • Tveite B. 1977. Bonitetskurver for gran [Site-index curves for Norway spruce (Picea abies (L.) Karst)]. Meddelelser fra Norsk Institutt for Skogforskning. 33.1:84.
  • Tveite B. 1981. Bonitering for gran, furu og bjørk. Norsk Skogbruk. 27:17–22.
  • Uzoh FCC, Oliver WW. 2006. Individual tree height increment model for managed even-aged stands of ponderosa pine throughout the western United States using linear mixed effects models. For Ecol Manage. 221:147–154. doi: 10.1016/j.foreco.2005.09.012
  • Vanclay JK. 1994. Modelling forest growth and yield: applications to mixed tropical forests. Oxon: CAB International. 321pp.
  • Vaughn NR, Turnblom EC, Ritchie MW. 2010. Bootstrap evaluation of a young Douglas-fir height growth model for the Pacific Northwest. For Sci. 56:592–602.
  • Wang ML, Bhatti J, Wang YH, Varem-Sanders T. 2011. Examining the gain in model prediction accuracy using serial autocorrelation for dominant height prediction. For Sci. 57:241–251.
  • Wichmann L. 2001. Annual variations in competition symmetry in even-aged sitka spruce. Ann Bot. 88:145–151. doi: 10.1006/anbo.2001.1445
  • Wykoff WR, Crookston NL, Stage AR. 1982. User’s guide to the stand prognosis model. Gen. Tech. Rep. INT-133. USDA Forest Service, Intermountain Forest and Range Experiment Station.
  • Zhao D, Borders B, Wilson M, Rathbun SL. 2006. Modeling neighborhood effects on the growth and survival of individual trees in a natural temperate species-rich forest. Ecol Modell. 196:90–102. doi: 10.1016/j.ecolmodel.2006.02.002
  • Zobel JM, Ek AR, Burk TE. 2011. Comparison of Forest Inventory and Analysis surveys, basal area models, and fitting methods for the aspen forest type in Minnesota. For Ecol Manage. 262:188–194. doi: 10.1016/j.foreco.2011.03.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.