216
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of thinning on nitrogen status of a larch plantation, illustrated by 15N natural abundance and N resorption

, , , &
Pages 357-364 | Received 17 Feb 2017, Accepted 07 Oct 2017, Published online: 24 Oct 2017

References

  • Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol. 84:597–608. doi: 10.2307/2261481
  • Bai SH, Dempsey R, Reverchon F, Blumfield TJ, Ryan S, Cernusak LA. 2017. Effects of forest thinning on soil-plant carbon and nitrogen dynamics. Plant Soil. 411:437–449. doi: 10.1007/s11104-016-3052-5
  • Berthrong ST, Jobbágy EG, Jackson RB. 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl. 19:2228–2241. doi: 10.1890/08-1730.1
  • Blanco JA, Imbert JB, Castillo FJ. 2009. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecol Appl. 19:682–698. doi: 10.1890/1051-0761-19.3.682
  • Blanco JA, Imbert JB, Castillo FJ. 2011. Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry. 106:397–414. doi: 10.1007/s10533-010-9518-2
  • Bolat L. 2014. The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey. Eur J Forest Res. 133:131–139. doi: 10.1007/s10342-013-0752-8
  • Chen D, Loboda TV, Krylov A, Potapov PV. 2016. Mapping stand age dynamics of the Siberian larch forests from recent Landsat observations. Remote Sens Environ. 187:320–331. doi: 10.1016/j.rse.2016.10.033
  • Chen XL, Wang D, Chen X, Wang J, Diao JJ, Zhang JY, Guan QW. 2015. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Appl Soil Ecol. 92:35–44. doi: 10.1016/j.apsoil.2015.01.018
  • Chinese Ministry of Forestry. 2014. Forest resource statistics of China. [Beijing (China): Department of Forest Resource and Management]. Chinese; [accessed 2014 Jun 26]. http://www.forestry.gov.cn/
  • Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang LX. 2015. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil. 396:1–26. doi: 10.1007/s11104-015-2542-1
  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, et al. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183:980–992. doi: 10.1111/j.1469-8137.2009.02917.x
  • Fang YT, Koba K, Yoh M, Makabe A, Liu XY. 2012. Patterns of foliar d15N and their control in Eastern Asian forests. Ecol Res. 28:735–748 doi: 10.1007/s11284-012-0934-8
  • Gang Q, Yan QL, Zhu JJ. 2015. Effects of thinning on early seed regeneration of two broadleaved tree species in larch plantations: implication for converting pure larch plantations into larch-broadleaved mixed forests. Forestry. 88:573–585. doi: 10.1093/forestry/cpv025
  • Gower ST, Richards JH. 1990. Larches: deciduous conifers in an evergreen world. BioScience. 40:818–826. doi: 10.2307/1311484
  • Gruber N, Galloway JN. 2008. An earth-system perspective of the global nitrogen cycle. Nature. 451:293–296. doi: 10.1038/nature06592
  • Högberg P, Johannisson C, Yarwood S, Callesen I, Näsholm T, Myrold DD, Högberg MN. 2011. Recovery of ectomycorrhiza after “nitrogen saturation” of a conifer forest. New Phytol. 189:515–525. doi: 10.1111/j.1469-8137.2010.03485.x
  • Houlton BZ, Sigman DM, Hedin LO. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. PNAS. 103:8745–8750. doi: 10.1073/pnas.0510185103
  • Inagaki Y, Kuramoto S, Torii A, Shinomiya Y, Fukata H. 2008. Effects of thinning on leaf-fall and leaf-litter nitrogen concentration in hinoki cypress (Chamaecyparis obtusa Endlicher) plantation stands in Japan. For Ecol Manage. 255:1859–1867. doi: 10.1016/j.foreco.2007.12.007
  • Jiménez MN, Navarro FB. 2015. Monthly foliar-nutrient pattern in a semiarid Aleppo pine plantation five years after thinning. For Ecol Manage. 343:63–72. doi: 10.1016/j.foreco.2015.01.032
  • Koba K, Hirobe M, Koyama L, Kohzu A, Tokuchi N, Nadelhoffer KJ, Wada E, Takeda H. 2003. Natural 15 N abundance of plants and soil N in a temperate coniferous forest. Ecosystems. 6:457–469. doi: 10.1007/s10021-002-0132-6
  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology. 89:371–379. doi: 10.1890/06-2057.1
  • Li MC, Zhu JJ, Zhang M, Song LN. 2013. Foliar δ15N variations with stand ages in temperate secondary forest ecosystems, Northeast China. Scand J Forest Res. 28:428–435. doi: 10.1080/02827581.2012.755563
  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B. 2012. The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta-analysis. Global Ecol Biogeogr. 21:318–327. doi: 10.1111/j.1466-8238.2011.00690.x
  • Liu SR, Li XM, Niu LM. 1998. The degradation of soil fertility in pure larch plantations in the northeastern part of China. Ecol Eng. 10:75–86. doi: 10.1016/S0925-8574(97)10024-6
  • Martinelli LA, Piccolo MC, Townsend AR, Viousek PM, Cuevas E, Mcdowell W, Robertson GP, Santos OC, Treseder K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry. 46:45–65.
  • Mason WL, Zhu JJ. 2014. Silviculture of planted forests managed formulti-functional objectives: lessons from Chinese and British experiences. In: Fenning T, editor. Challenges and opportunities for the world’s forests in the 21st century. New York: Springer; p. 37–54.
  • Matsushima M, Choi WJ, Chang SX. 2012. White spruce foliar δ13C and δ15N indicate changed soil N availability by understory removal and N fertilization in a 13-year-old boreal plantation. Plant Soil. 361:375–384. doi: 10.1007/s11104-012-1254-z
  • Miesel JR. 2012. Differential responses of Pinus ponderosa and Abies concolor foliar characteristics and diameter growth to thinning and prescribed fire treatments. For Ecol Manage. 284:163–173. doi: 10.1016/j.foreco.2012.07.054
  • Pardo LH, Hemond HF, Montoya JP, Fahey TJ, Siccama TG. 2002. Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Can J For Res. 32:1126–1136. doi: 10.1139/x02-041
  • Pilegaard K, Skiba U, Ambus P, Beier C, Brüggemann N, Butterbach-Bahl K, Dick J, Dorsey J, Duyzer J, Gallagher M, et al. 2006. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences. 3:651–661. doi: 10.5194/bg-3-651-2006
  • Primicia I, Imbert JB, Traver MC, Castillo FJ. 2014. Inter-specific competition and management modify the morphology, nutrient content and resorption in Scots pine needles. Eur J For Res. 133:141–151. doi: 10.1007/s10342-013-0753-7
  • Qingyuan County Book. 1991. Liaoning People’s Publishing House, Shenyang, p. 77.
  • Qiu S, Bell RW, Hobbs RJ, McComb AJ. 2013. Overstorey and juvenile response to thinning and drought in a jarrah (Eucalyptus marginata Donn ex Sm.) forest of southwestern Australia. Plant Soil. 365:291–305. doi: 10.1007/s11104-012-1368-3
  • Reverchon F, Flicker RC, Yang H, Yan G, Xu Z, Chen C, Bai SH, Zhang D. 2014. Changes in δ15N in a soil–plant system under different biochar feedstocks and application rates. Biol Fertil Soils. 50:275–283. doi: 10.1007/s00374-013-0850-2
  • Sheng WP, Yu GR, Fang HJ, Liu YC, Wang QF, Chen Z, Zhang L. 2013. Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China. Sci Rep. 4:4249 doi: 10.1038/srep04249
  • Soil Survey Staff. 1999. Soil taxonomy-A basic system for making and interpreting soil surveys. USDA Agric. Handb. 436. U.S. Gov. Print. Office, Washington, DC.
  • Templer PH, Arthur MA, Lovett GM, Weathers KC. 2007. Plant and soil natural abundance δ 15N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia. 153:399–406. doi: 10.1007/s00442-007-0746-7
  • van Heerwaarden LM, Toet S, Aerts R. 2003. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos. 101:664–669. doi: 10.1034/j.1600-0706.2003.12351.x
  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr. 82:205–220. doi: 10.1890/11-0416.1
  • Wang A, Fang YT, Chen DX, Koba K, Makabe A, Li YD, Luo TS, Yoh M. 2014. Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China. Oecologia. 174:567–580. doi: 10.1007/s00442-013-2778-5
  • Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol. 17:10–19. doi: 10.1046/j.1365-2435.2003.00694.x
  • Yan QL, Gang Q, Zhu JJ, Sun YR. 2016. Variation in survival and growth strategies for seedlings of broadleaved tree species in response to thinning of larch plantations: implication for converting pure larch plantations into larch-broadleaved mixed forests. Environ Exp Bot. 129:108–117. doi: 10.1016/j.envexpbot.2016.03.003
  • Yan T, Lü XT, Yang K, Zhu JJ. 2016. Leaf nutrient dynamics and nutrient resorption: a comparison between larch plantations and adjacent secondary forests in Northeast China. J Plant Ecol. 9:165–173. doi: 10.1093/jpe/rtv034
  • Yan QL, Zhu JJ, Gang Q. 2013. Comparison of spatial patterns of soil seed banks between larch plantations and adjacent secondary forests in northeast China: implication for spatial distribution of larch plantations. Trees. 27:1747–1754. doi: 10.1007/s00468-013-0920-y
  • Yan T, Zhu JJ, Yang K, Yu LZ, Zhang XJ. 2017. Nutrient removal under different harvesting scenarios for larch plantations in northeast China: implications for nutrient conservation and management. For Ecol Manage. 400:150–158. doi: 10.1016/j.foreco.2017.06.004
  • Yang YH, Ji CJ, Robinson D, Zhu B, Fang HJ, Shen HH, Fang JY. 2013. Vegetation and soil 15N natural abundance in alpine grasslands on the Tibetan Plateau: patterns and implications. Ecosystems. 16:1013–1024. doi: 10.1007/s10021-013-9664-1
  • Yang K, Shi W, Zhu JJ. 2013. The impact of secondary forests conversion into larch plantations on soil chemical and microbiological properties. Plant Soil. 368:535–546. doi: 10.1007/s11104-012-1535-6
  • Yang K, Zhu JJ, Yan QL, Zhang JX. 2012. Soil enzyme activities as potential indicators of soluble organic nitrogen pools in forest ecosystems of Northeast China. Ann For Sci. 69:795–803. doi: 10.1007/s13595-012-0198-z
  • Yang K, Zhu JJ, Zhang M, Yan QL, Sun OJX. 2010. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J Plant Ecol. 3:175–182. doi: 10.1093/jpe/rtq022
  • Zhu JJ, Liu ZG, Wang HX, Yan QL, Fang HY, Hu LL, Yu LZ. 2008. Effects of site preparation on emergence and early establishment of Larix olgensis in montane regions of northeastern China. New For. 36:247–260. doi: 10.1007/s11056-008-9097-4
  • Zhu JJ, Mao ZH, Hu LL, Zhang JX. 2007. Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China. J Forest Res. 12:403–416. doi: 10.1007/s10310-007-0033-9
  • Zhu JJ, Matsuzaki T, Lee FQ, Gonda Y. 2003. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. For Ecol Manage. 182:339–354. doi: 10.1016/S0378-1127(03)00094-X
  • Zhu JJ, Yang K, Yan QL, Liu ZG, Yu LZ, Wang HX. 2010. Feasibility of implementing thinning in even-aged Larix olgensis plantations to develop uneven-aged larch-broadleaved mixed forests. J For Res. 15:71–80. doi: 10.1007/s10310-009-0152-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.