556
Views
0
CrossRef citations to date
0
Altmetric
Articles

Occupancy rates of excavated cavities and nest boxes in managed boreal forest in relation to forest structure

ORCID Icon, ORCID Icon & ORCID Icon
Pages 367-379 | Received 08 Jul 2022, Accepted 06 Jul 2023, Published online: 13 Jul 2023

References

  • Aitken KEH, Martin K. 2008. Resource selection plasticity and community responses to experimental reduction of a critical resource. Ecology. 89:971–980. doi:10.1890/07-0711.1.
  • Amininasab SM, Vedder O, Schut E, de Jong B, Magrath MJ, Korsten P, Komdeur J. 2016. Influence of fine-scale habitat structure on nest-site occupancy, laying date and clutch size in blue tits Cyanistes caeruleus. Acta Oecol. 70:37–44. doi:10.1016/j.actao.2015.11.006.
  • Andersson J, Domingo Gómez E, Michon S, Roberge J-M. 2018. Tree cavity densities and characteristics in managed and unmanaged Swedish boreal forest. Scand J For Res. 33:233–244. doi:10.1080/02827581.2017.1360389.
  • Bai M-L, Wichmann F, Mühlenberg M. 2003. The abundance of tree holes and their utilization by hole-nesting birds in a primeval boreal forest of Mongolia. Acta Ornithologica. 38:95–102. doi:10.3161/068.038.0205.
  • Baroni D, Hanzelka J, Raimondi T, Gamba M, Brommer JE, Laaksonen T. 2023. Passive acoustic survey reveals the abundance of a low-density predator and its dependency on mature forests. Landsc Ecol. doi:10.1007/s10980-023-01667-1.
  • Baroni D, Korpimäki E, Selonen V, Laaksonen T. 2020. Tree cavity abundance and beyond: nesting and food storing sites of the pygmy owl in managed boreal forests. For Ecol Manag. 460:117818. doi:10.1016/j.foreco.2019.117818.
  • Basile M, Asbeck T, Pacioni C, Mikusiński G, Storch I. 2020. Woodpecker cavity establishment in managed forests: relative rather than absolute tree size matters. Wildl Biol. doi:10.2981/wlb.00564.
  • Boyle WA, Ganong CN, Clark DB, Hast MA. 2008. Density, distribution, and attributes of tree cavities in an old-growth tropical rain forest: short communications. Biotropica. 40:241–245. doi:10.1111/j.1744-7429.2007.00357.x.
  • Brawn JD. 1988. Selectivity and ecological consequences of cavity nesters using natural vs. artificial nest sites. Auk. 105:789–791. https://academic.oup.com/auk/article/105/4/789/5192846.
  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. 2017. glmmTMB balances speed and flexibility Among packages for zero-inflated generalized linear mixed modeling. R J. 9:378–400. doi:10.32614/RJ-2017-066.
  • Broughton RK, Hill RA, Bellamy PE, Hinsley SA. 2011. Nest-sites, breeding failure, and causes of non-breeding in a population of British marsh tits Poecile palustris. Bird Study. 58:229–237. doi:10.1080/00063657.2011.582641.
  • Camprodon J, Salvanyà J, Soler-Zurita J. 2008. The abundance and suitability of tree cavities and their impact on hole-nesting bird populations in beech forests of NE Iberian Peninsula. Acta Ornithologica. 43:17–31. doi:10.3161/000164508X345293.
  • Carlson A. 1994. Cavity breeding birds and clearcuts. Ornis Fenn. 71:120–122.
  • Carlson A, Sandström U, Olsson K. 1998. Availability and use of natural tree holes by cavity nesting birds in a Swedish deciduous forest. Ardea. 86:109–119.
  • Ceia RS, Lopes PB, Da Silva LP. 2023. Factors determining the occupancy of nest-boxes by great tits (Parus major) in eucalypt plantations. Avian Research. 14:100098. doi:10.1016/j.avrs.2023.100098.
  • Cockle KL, Martin K, Wesołowski T. 2011. Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front Ecol Environ. 9:377–382. doi:10.1890/110013.
  • Cody ML. 1981. Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. BioScience. 31:107–113. doi:10.2307/1308252.
  • Dhondt A, Schillemans J, Laet J. 1982. Blue tit territories at different density levels. Ardea-Wageningen. 70:185–188.
  • Dolenec Z. 2019. Nestbox occupancy by the great tit (Parus major L) in young deciduous forest stands. Šumar List (Online). 143:352–352. doi:10.31298/sl.143.7-8.6.
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36. doi:10.1016/j.rse.2011.11.026.
  • Edworthy AB, Martin K. 2013. Persistence of tree cavities used by cavity-nesting vertebrates declines in harvested forests: tree cavity persistence in harvested forest. J Wildl Manage. 77:770–776. doi:10.1002/jwmg.526.
  • Edworthy AB, Trzcinski MK, Cockle KL, Wiebe KL, Martin K. 2018. Tree cavity occupancy by nesting vertebrates across cavity age. Jour Wild Mgmt. 82:639–648. doi:10.1002/jwmg.21398.
  • Edworthy AB, Wiebe KL, Martin K. 2012. Survival analysis of a critical resource for cavity-nesting communities: patterns of tree cavity longevity. Ecol Appl. 22:1733–1742. doi:10.1890/11-1594.1.
  • Fuller RM, Devereux BJ, Gillings S, Amable GS. 2005. Indices of bird-habitat preference from field surveys of birds and remote sensing of land cover: a study of south-eastern England with wider implications for conservation and biodiversity assessment. Glob Ecol Biogeogr. 14:223–239. doi:10.1111/j.1466-822X.2005.00145.x.
  • Goodenough AE, Elliot SL, Hart AG. 2009. Are nest sites actively chosen? Testing a common assumption for three non-resource limited birds. Acta Oecol. 35:598–602. doi:10.1016/j.actao.2009.05.003.
  • Gutzat F, Dormann CF. 2018. Decaying trees improve nesting opportunities for cavity-nesting birds in temperate and boreal forests: a meta-analysis and implications for retention forestry. Ecol Evol. 8:8616–8626. doi:10.1002/ece3.4245.
  • Hardenbol AA, Pakkala T, Kouki J. 2019. Persistence of a keystone microhabitat in boreal forests: cavities of Eurasian three-toed woodpeckers (Picoides tridactylus). For Ecol Manag. 450:117530. doi:10.1016/j.foreco.2019.117530.
  • Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R Package version 0.4.5.
  • Hebda G, Wesołowski T, Rowiński P. 2017. Nest sites of a strong excavator, the great spotted woodpecker Dendrocopos major, in a primeval forest. Ardea. 105:61–71. doi:10.5253/arde.v105i1.a8.
  • Hui G, Zhang G, Zhao Z, Yang A. 2019. Methods of forest structure research: a review. Curr Forestry Rep. 5:142–154. doi:10.1007/s40725-019-00090-7.
  • Keller V, Herrando S, Voríšek P, Franch M, Kipson M, Milanesi P, Martí D, Anton M, Klvanová A, Kalyakin MV, Bauer HG. 2020. European breeding bird atlas 2: Distribution, abundance and change. Barcelona: European Bird Census Council & Lynx Edicions.
  • Koenig WD, Hallock EM, Weber DJ, Walters EL. 2021. Nest cavity reuse by the cooperatively breeding acorn woodpecker. Ornithology. 138:ukaa088. doi:10.1093/ornithology/ukaa088.
  • Kouki J, Löfman S, Martikainen P, Rouvinen S, Uotila A. 2001. Forest fragmentation in Fennoscandia: linking habitat requirements of wood-associated threatened species to landscape and habitat changes. Scand J For Res. 16:27–37. doi:10.1080/028275801300090564.
  • Krebs JR. 1971. Territory and breeding density in the great tit, Parus major L. Ecology. 52:3–22. doi:10.2307/1934734.
  • Lemel J. 1989. Habitat distribution in the great tit Parus major in relation to reproductive success, dominance, and biometry. Ornis Scand (Scand J Ornithology). 20:226–233. doi:10.2307/3676917.
  • Lüdecke D, Makowski D, Waggoner P, Patil I., Waggoner P, Makowski D 2021. Performance: an R package for assessment, comparison and testing of statistical models. JOSS. 6:3139. doi:10.21105/joss.03139.
  • Lundberg A, Alatalo RV. 2010. The pied flycatcher. London: Bloomsbury Publishing.
  • Määttänen A-M, Virkkala R, Leikola N, Heikkinen RK. 2022. Increasing loss of mature boreal forests around protected areas with red-listed forest species. Ecol Process. 11:17. doi:10.1186/s13717-022-00361-5.
  • MacArthur RH, MacArthur JW. 1961. On bird species diversity. Ecology. 42:594–598. doi:10.2307/1932254.
  • Mägi M, Mänd R, Tamm H, Sisask E, Kilgas P, Tilgar V. 2009. Low reproductive success of great tits in the preferred habitat: a role of food availability. Écoscience. 16:145–157. doi:10.2980/16-2-3215.
  • Mäkisara K, Katila M, Peräsaari J. 2019. The multi-source national forest inventory of Finland – methods and results 2015. Luonnonvarakeskus.
  • Mänd R, Leivits A, Leivits M, Rodenhouse NL. 2009. Provision of nestboxes raises the breeding density of great tits Parus major equally in coniferous and deciduous woodland. Ibis. 151:487–492. doi:10.1111/j.1474-919X.2009.00929.x.
  • Mänd R, Tilgar V, Lõhmus A, Leivits A. 2005. Providing nest boxes for hole-nesting birds – does habitat matter? Biodivers Conserv. 14:1823–1840. doi:10.1007/s10531-004-1039-7.
  • Martin K, Aitken KEH, Wiebe KL. 2004. Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor. 106:5–19. doi:10.1093/condor/106.1.5.
  • Martin K, Eadie JM. 1999. Nest webs: a community-wide approach to the management and conservation of cavity-nesting forest birds. For Ecol Manag. 115:243–257. doi:10.1016/S0378-1127(98)00403-4.
  • Maziarz M, Broughton RK, Wesołowski T. 2017. Microclimate in tree cavities and nest-boxes: implications for hole-nesting birds. For Ecol Manag. 389:306–313. doi:10.1016/j.foreco.2017.01.001.
  • Maziarz M, Wesołowski T, Hebda G, Cholewa M, Broughton RK. 2016. Breeding success of the great tit Parus major in relation to attributes of natural nest cavities in a primeval forest. J Ornithol. 157:343–354. doi:10.1007/s10336-015-1294-2.
  • McComb WC, Noble RE. 1981. Nest-Box and natural-cavity use in three Mid-south forest habitats. J Wildl Manage. 45:93–101. doi:10.2307/3807877.
  • Naimi B, a s. Hamm N, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography. 37:191–203. doi:10.1111/j.1600-0587.2013.00205.x.
  • Ouellet-Lapointe U, Drapeau P, Cadieux P, Imbeau L. 2012. Woodpecker excavations suitability for and occupancy by cavity users in the boreal mixedwood forest of eastern Canada. Écoscience. 19:391–397. doi:10.2980/19-4-3582.
  • Pakkala T, Tiainen J, Kouki J. 2017. The importance of nesting cavity and tree reuse in the three-toed woodpecker Picoides tridactylus in dynamic forest landscapes. Ann Zool Fenn. 54:175–191. doi:10.5735/086.054.0116.
  • Pakkala T, Tiainen J, Pakkala H, Piha M, Kouki J. 2020. Nest tree characteristics of grey-headed woodpeckers (Picus canus) in boreal forests. Ornis Fenn. 97:89–100.
  • Pakkala T, Tiainen J, Piha M, Kouki J. 2018a. How important are nest cavities made by the three-toed woodpecker Picoides tridactylus for cavity-nesting forest bird species? Acta Ornithologica. 53:69–79. doi:10.3161/00016454AO2018.53.1.007.
  • Pakkala T, Tiainen J, Piha M, Kouki J. 2018b. Three-toed woodpecker cavities in trees: a keystone structural feature in forests shows decadal persistence but only short-term benefit for secondary cavity-breeders. For Ecol Manag. 413:70–75. doi:10.1016/j.foreco.2018.01.043.
  • Pasinelli G. 2007. Nest site selection in middle and great spotted woodpeckers Dendrocopos medius & D. major: implications for forest management and conservation. Biodivers Conserv. 16:1283–1298. doi:10.1007/s10531-007-9162-x.
  • Peltola A, Räty M, Sauvula-Seppälä T, Torvelainen J, Uotila E, Vaahtera E, Ylitalo E. 2020. Suomen metsätilastot 2020. Helsinki: Luonnonvarakeskus (Luke).
  • Potti J, Camacho C, Canal D, Martinez-Padilla J. 2018. Long-term occupancy of nest boxes as a measure of territory quality for pied flycatchers. J Field Ornithol. 89:337–347. doi:10.1111/jofo.12266.
  • Purcell KL, Verner J, Oring LW. 1997. A comparison of the breeding ecology of birds nesting in boxes and tree cavities. Auk. 114:646–656. doi:10.2307/4089284.
  • QGIS.org. 2021. QGIS Geographic Information System.
  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/.
  • Remm J, Lõhmus A. 2011. Tree cavities in forests – the broad distribution pattern of a keystone structure for biodiversity. For Ecol Manag. 262:579–585. doi:10.1016/j.foreco.2011.04.028.
  • Remm J, Lõhmus A, Remm K. 2006. Tree cavities in riverine forests: what determines their occurrence and use by hole-nesting passerines? For Ecol Manag. 221:267–277. doi:10.1016/j.foreco.2005.10.015.
  • Rhodes CJ, Henrys P, Siriwardena GM, Whittingham MJ, Norton LR. 2015. The relative value of field survey and remote sensing for biodiversity assessment. Methods Ecol Evol. 6:772–781. doi:10.1111/2041-210X.12385.
  • Rönkä M, Tolvanen H, Lehikoinen E, von Numers M, Rautkari M. 2008. Breeding habitat preferences of 15 bird species on south-western Finnish archipelago coast: applicability of digital spatial data archives to habitat assessment. Biol Conserv. 141:402–416. doi:10.1016/j.biocon.2007.10.010.
  • Rosenvald R, Lõhmus A, Kraut A, Remm L. 2011. Bird communities in hemiboreal old-growth forests: the roles of food supply, stand structure, and site type. For Ecol Manag. 262:1541–1550. doi:10.1016/j.foreco.2011.07.002.
  • Russell LV. 2022. Emmeans: estimated marginal means, aka least-squares means. R Package version 1.7.2.
  • Rytkönen S, Krams I. 2003. Does foraging behaviour explain the poor breeding success of great tits Parus major in northern Europe? J Avian Biol. 34:288–297. doi:10.1034/j.1600-048X.2003.03041.x.
  • Rytkönen S, Orell M. 2001. Great tits, Parus major, lay too many eggs: experimental evidence in mid-boreal habitats. Oikos. 93:439–450. doi:10.1034/j.1600-0706.2001.930309.x.
  • Rytkönen S, Vesterinen EJ, Westerduin C, Leviäkangas T, Vatka E, Mutanen M, Välimäki P, Hukkanen M, Suokas M, Orell M. 2019. From feces to data: a metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecol Evol. 9:631–639. doi:10.1002/ece3.4787.
  • Sandström U. 1991. Enhanced predation rates on cavity bird nests at deciduous forest edges: an experimental study. Ornis Fenn. 68:93–98.
  • Sasvari L. 1991. Territoriality in the great tit Parus major at low and high densities. Bird Behav. 9:88–93. doi:10.3727/015613890791749082.
  • Schwartz T, Genouville A, Besnard A. 2020. Increased microclimatic variation in artificial nests does not create ecological traps for a secondary cavity breeder, the European roller. Ecol Evol. 10:13649–13663. doi:10.1002/ece3.6871.
  • Serrano-Davies E, Barrientos R, Sanz JJ. 2017. The role of nest-box density and placement on occupation rates and breeding performance: a case study with Eurasian blue tits. Ornis Fenn. 94:21–32. doi:10.13039/501100004837.
  • Siitonen J, Martikainen P, Punttila P, Rauh J. 2000. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For Ecol Manag. 128:211–225. doi:10.1016/S0378-1127(99)00148-6.
  • Söderström B. 2009. Effects of different levels of green- and dead-tree retention on hemi-boreal forest bird communities in Sweden. For Ecol Manag. 257:215–222. doi:10.1016/j.foreco.2008.08.030.
  • Sudyka J, Di Lecce I, Wojas L, Rowiński P, Szulkin M. 2022. Nest-boxes alter the reproductive ecology of urban cavity-nesters in a species-dependent way. J Avian Biol. doi:10.1111/jav.03051.
  • Suhonen J, Alatalo RV, Gustafsson L. 1994. Evolution of foraging ecology in Fennoscandian tits (Parus spp). Proc R Soc London Series B: Biol Sci. 258:127–131. doi:10.1098/rspb.1994.0152.
  • SYKE. 2021. Finnish environment institute (SYKE), downloadable spatial datasets.
  • Virkkala R. 2004. Bird species dynamics in a managed southern boreal forest in Finland. For Ecol Manag. 195:151–163. doi:10.1016/j.foreco.2004.02.037.
  • Virkkala R, Leikola N, Kujala H, Kivinen S, Hurskainen P, Kuusela S, Valkama J, Heikkinen RK. 2022. Developing fine-grained nationwide predictions of valuable forests using biodiversity indicator bird species. Ecol Appl. doi:10.1002/eap.2505.
  • Virkkala R, Rajasärkkä A, Väisänen RA, Vickholm M, Virolainen E. 1994. Conservation value of nature reserves: do hole-nesting birds prefer protected forests in southern Finland? Ann Zool Fenn. 31:173–186.
  • Volke U, Vahter I, Volke V. 2010. Nest site selection of the great spotted woodpecker (Dendrocopos major) in Saaremaa. Hirundo. 23:53–62.
  • Wesołowski T. 2011. “Lifespan” of woodpecker-made holes in a primeval temperate forest: a thirty year study. For Ecol Manag. 262:1846–1852. doi:10.1016/j.foreco.2011.08.001.
  • Wesołowski T, Rowiński P. 2012. The breeding performance of blue tits Cyanistes caeruleus in relation to the attributes of natural holes in a primeval forest. Bird Study. 59:437–448. doi:10.1080/00063657.2012.722189.
  • Wiebe KL, Cockle KL, Trzcinski MK, Edworthy AB, Martin K. 2020. Gaps and runs in nest cavity occupancy: cavity “destroyers” and “cleaners” affect reuse by secondary cavity nesting vertebrates. Front Ecol Evol. 8:205. doi:10.3389/fevo.2020.00205.
  • Zahner V, Sikora L, Pasinelli G. 2012. Heart rot as a key factor for cavity tree selection in the black woodpecker. For Ecol Manag. 271:98–103. doi:10.1016/j.foreco.2012.01.041.
  • Zawadzka D, Drozdowski S, Zawadzki G, Zawadzki J. 2016. The availability of cavity trees along an age gradient in fresh pine forests. Silva Fenn. 50:article id 1441. doi:10.14214/sf.1441.