155
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Water level impact on pine seedlings in greenhouse conditions: assessing growth and survival potential in ditched and managed peatlands

ORCID Icon, ORCID Icon & ORCID Icon
Pages 199-210 | Received 16 Jan 2024, Accepted 29 Apr 2024, Published online: 23 May 2024

References

  • Ballesteros-Cánovas JA, Edvardsson J, Corona C, Mažeika J, Stoffel M. 2022. Estimation of recent peat accumulation with tree saplings. Prog Phys Geog: Earth Environ. 46(4):515–529. doi:10.1177/03091333211073786.
  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J of Stat Softw. 67:1–48. doi:10.18637/jss.v067.i01.
  • Blanchet G, Guillet S, Calliari B, Corona C, Edvardsson J, Stoffel M, Bragazza L. 2017. Impacts of regional climatic fluctuations on radial growth of Siberian and Scots pine at Mukhrino mire (central-western Siberia). Sci Tot Environ. 574:1209–1216. doi:10.1016/j.scitotenv.2016.06.225.
  • Boggie R. 1972. Effect of water-table height on root development of Pinus contorta on deep peat in Scotland. Oikos. 23(3):304–312. doi:10.2307/3543168.
  • Breeuwer A, Robroek BJ, Limpens J, Heijmans MM, Schouten MG, Berendse F. 2009. Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol. 10(4):330–339. doi:10.1016/j.baae.2008.05.005.
  • Eckhard G, Horst JW, Neumann E. 2013. Adaptation of plants to adverse chemical soil conditions. In: Marschner P., editor. Marschner’s mineral nutrition of higher plants. Third Ed. Amsterdam, the Netherlands: Elsevier; p. 408–471.
  • Edvardsson J, Šimanauskiene R, Taminskas J, Baužiene J, Stoffel M. 2015. Increased tree establishment in Lithuanian peat bogs detected using a combination of field and remotely sensed approaches. Sci Total Environ. 505:113–120. doi:10.1016/j.scitotenv.2014.09.078.
  • Edvardsson J, Stoffel M, Corona C, Bragazza L, Leuschner HH, Charman DJ, Helama S. 2016. Subfossil peatland trees as proxies for Holocene palaeohydrology and palaeoclimate. Earth-Sci Rev. 163:118–140. doi:10.1016/j.earscirev.2016.10.005.
  • Escobar D, Belyazid S, Manzoni S. 2022. Back to the future: restoring northern drained forested peatlands for climate change mitigation. Front. Environ Sci. 10:108. doi:10.3389/fenvs.2022.834371.
  • Farquhar GD, Wong SC. 1984. An empirical-model of stomatal conductance. Aust J Plant Physiol. 11:191–209.
  • Fox J, Weisberg S. 2019. An R companion to applied regression. Thousand Oaks, CA: Sage.
  • Gatis N, Benaud P, Anderson K, Ashe J, Grand-Clement E, Luscombe DJ, Puttock A, Brazier RE. 2023. Peatland restoration increases water storage and attenuates downstream stormflow but does not guarantee an immediate reversal of long-term ecohydrological degradation. Sci Rep. 13(1):15865. doi:10.1038/s41598-023-40285-4.
  • Glenz C, Schlaepfer R, Iorgulescu I, Kienast F. 2006. Flooding tolerance of Central European tree and shrub species. For Ecol Manag. 235:1–13. doi:10.1016/j.foreco.2006.05.065.
  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl. 1(2):182–195. doi:10.2307/1941811.
  • Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, Couwenberg J. 2020. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 11(1):1644. doi:10.1038/s41467-020-15499-z.
  • Haapalehto T, Kotiaho JS, Matilainen R, Tahvanainen T. 2014. The effects of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatlands. J Hydrol. 519:1493–1505. doi:10.1016/j.jhydrol.2014.09.013.
  • Härkönen LH, Lepistö A, Sarkkola S, Kortelainen P, Räike A. 2023. Reviewing peatland forestry: implications and mitigation measures for freshwater ecosystem browning. For Ecol Manag. 531:120776. doi:10.1016/j.foreco.2023.120776.
  • Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt D, Packalen M, Siewert MB, Treat C. 2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. P Natl Acad Sci. 117(34):20438–20446. doi:10.1073/pnas.1916387117.
  • Jagodziński AM, Dyderski MK, Gęsikiewicz K, Horodecki P. 2020. Consequences of different sample drying temperatures for accuracy of biomass inventories in forest ecosystems. Sci Rep. 10(1):16009. doi:10.1038/s41598-020-73053-9.
  • Jauhiainen J, Hooijer A, Page SE. 2012. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosci Discussions. 8(4): 617–630. doi:10.5194/bg-9-617-2012.
  • Joosten H, Sirin A, Couwenberg J, Laine A, Smith P. 2016. Peatland restoration and ecosystem services. In: Bonn A, Allott T, Evans M, Joosten H, Stoneman R., editors. Cambridge, UK: Cambridge University Press.
  • Kasimir A, He H, Coria J, Nordén A. 2018. Land use of drained peatlands: greenhouse Gas fluxes, plant production, and economics. Glob Change Biol. 24(8):3302–3316. doi:10.1111/gcb.13931.
  • Klemedtsson L, Von Arnold K, Weslien P, Gundersen P. 2005. Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Glob Change Biol. 11(7):1142–1147. doi:10.1111/j.1365-2486.2005.00973.x.
  • Kozlowski TT, Pallardy SG. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev. 68(2):270–334. doi:10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2.
  • Kreuzwieser J, Rennenberg H. 2014. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 37(10):2245–2259. doi:10.1111/pce.12310.
  • Kreyling J, Tanneberger F, Jansen F, van der Linden S, Aggenbach C, Blüml V, Couwenberg J, Emsens WJ, Joosten H, Klimkowska A, et al. 2021. Rewetting does not return drained fen peatlands to their old selves. Nat Commun. 12:5693. doi:10.1038/s41467-021-25619-y.
  • Laine J, Minkkinen K, Trettin C. 2009. Direct human impacts on the peatland carbon sink. Carbon Cycling in Northern Peatlands. 184:71–78.
  • Lamentowicz M, Kajukało-Drygalska K, Kołaczek P, Jassey VE, Gąbka M, Karpińska-Kołaczek M. 2020. Testate amoebae taxonomy and trait diversity are coupled along an openness and wetness gradient in pine-dominated Baltic bogs. Eur J Protistol. 73:125674. doi:10.1016/j.ejop.2020.125674.
  • Laudon H, Hasselquist EM. 2023. Applying continuous-cover forestry on drained boreal peatlands; water regulation, biodiversity, climate benefits and remaining uncertainties. Trees, Forests and People. 11:100363.
  • Lenth R. 2023. Emmeans: estimated marginal means, aka least-squares means. R package version 1.8.5 ed.
  • Levinsson A. 2013. Post-transplant shoot growth of trees from five different production methods is affected by site and species. Arboriculture & Urban Forestry. 39:201–210. doi:10.48044/jauf.2013.026.
  • Levinsson A, Emilsson T, Sjöman H, Wiström B. 2024. Using stomatal conductance capacity during water stress as a tool for tree species selection for urban stormwater control systems. Urban For Urban Gree. 91:128164. doi:10.1016/j.ufug.2023.128164.
  • Lindqvist H. 2000. Plant vitality in deciduous ornamental plants affected by lifting date and cold storage, Doctoral thesis. Swedish University of Agricultural Sciences.
  • Miner GL, Bauerle WL, Baldocchi DD. 2017. Estimating the sensitivity of stomatal conductance to photosynthesis: a review. Plant Cell Environ. 40(7):1214–1238. doi:10.1111/pce.12871.
  • Minkkinen K, Laine J. 1998. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res. 28(9):1267–1275. doi:10.1139/x98-104.
  • Montanarella L, Jones RJA, Hiederer R. 2006. The distribution of peatland in Europe. Mires and Peat. 1:1–11. http://www.mires-and-peatland.net.
  • Newsome RD, Kozlowski TT, Tang ZC. 1982. Responses of Ulmus americana seedlings to flooding of soil. Can J Botany. 60(9):1688–1695. doi:10.1139/b82-219.
  • Nuutinen T, Hirvelä H, Hynynen J, Härkönen K, Hökkä H, Korhonen KT, Salminen O. 2000. The role of peatlands in Finnish wood production-an analysis based on large-scale forest scenario modelling. Silva Fenn 34(2):131–153. doi:10.14214/sf.636.
  • Parent C, Capelli N, Berger A, Crèvecoeur M, Dat JF. 2008. An overview of plant responses to soil waterlogging. Plant Stress. 2(1):20–27.
  • Pearson M, Saarinen M, Nummelin L, Heiskanen J, Roitto M, Sarjala T, Laine J. 2013. Tolerance of peat-grown Scots pine seedlings to waterlogging and drought: morphological, physiological, and metabolic responses to stress. For Ecol Manag. 307:43–53. doi:10.1016/j.foreco.2013.07.007.
  • Petersson H, Ståhl G. 2006. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand J For Res. 21(S7):84–93. doi:10.1080/14004080500486864.
  • Posit Team. 2023. Rstudio: integrated development environment for R. Boston, MA: Posit Software, PBC.
  • Ratcliffe JL, Creevy A, Andersen R, Zarov E, Gaffney PP, Taggart MA, Mazei Y, Tsyganov AN, Rowson JG, Lapshina ED, Payne RJ. 2017. Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland. Sci Total Environ. 607:816–828. doi:10.1016/j.scitotenv.2017.06.276.
  • R Core Team. 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rietveld WJ. 1989. Transplanting stress in bareroot conifer seedlings: its development and progression to establishment. North J Appl For. 6(3):99–107. doi:10.1093/njaf/6.3.99.
  • Roulet NT, Moore TR. 1995. The effect of forestry drainage practices on the emission of methane from northern peatlands. Can J For Res. 25(3):491–499. doi:10.1139/x95-055.
  • Siebel HN, Bouwma IM. 1998. The occurrence of herbs and woody juveniles in a hardwood floodplain forest in relation to flooding and light. J Veg Sci. 9(5):623–630. doi:10.2307/3237280.
  • Sjoberg D, Baillie M, Haesendonckx S, Treis T. 2023. Ggsurvfit: Flexible Time-to-Event Figures. R package version. 0.3:0.
  • Smiljanić M, Seo J-W, Läänelaid A, van der Maaten-Theunissen M, Stajić B, Wilmking M. 2014. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence. Sci Total Environ. 500–501:52–63.
  • Stelling JM, Slesak RA, Windmuller-Campione MA, Grinde A. 2023. Effects of stand age, tree species, and climate on water table fluctuations and estimated evapotranspiration in managed peatland forests. J Environ Manag. 339:117783. doi:10.1016/j.jenvman.2023.117783.
  • Sutheimer CM, Meunier J, Hotchkiss SC, Rebitzke E, Radeloff VC. 2021. Historical fire regimes of North American hemiboreal peatlands. For Ecol Manag. 498:119561. doi:10.1016/j.foreco.2021.119561.
  • Therneau T. 2023. . A Package for Survival Analysis in R. R package version, 3.5-5 ed.
  • Turetsky MR, Donahue W, Benscoter BW. 2011. Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun. 2(1):514. doi:10.1038/ncomms1523.
  • Turetsky MR, St. Louis VL. 2006. Disturbance in boreal peatlands. In: Wieder RK, Vitt DH , Boreal peatland ecosystems. Berlin, Heidelberg: Springer Berlin Heidelberg; p. 359–379.
  • Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M. 2019. Welcome to the Tidyverse. J Open Source Software. 4(43):1686. doi:10.21105/joss.01686.
  • Wickham H, Bryan J. 2023. Readxl: Read Excel Files. R package version 1.4.2 ed.
  • Wickham H, François R, Henry L, Müller K, Vaughan D. 2023. dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org,https://github.com/tidyverse/dplyr.
  • Wieder RK, Vitt DH. eds. 2006. Boreal peatland ecosystems, Vol. 188. Berlin Heidelberg: Springer Science & Business Media.
  • Yu ZC. 2012. Northern peatland carbon stocks and dynamics: a review. Biogeosciences. 9(10):4071–4085. doi:10.5194/bg-9-4071-2012.