320
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Biophysical Aspects of Auger Processes

Pages 651-657 | Published online: 08 Jul 2009

References

  • Auger P. Sur les rayons b secondaires produit dans un gaz des rayons X. Comp Rend 1925; 180: 65 8.
  • Sastry KSR. Biological effects of the Auger emitter 125I: a review: report No. 1 of AAPM Nuclear Medicine Task Group No. 6. Med Phys 1992; 19: 1361 70.
  • Carlson TA, White RM. Formation of fragment ions from HC3125Te and C2H5125Te following the nuclear decays of CH3125I and C2H5125I. J Chem Phys 1964; 38: 2930 4.
  • Hofer KG, Prensky W, Hughes WL. Death and metastatic distribution of tumor cells in mice monitored with 125I-iodo-deoxyuridine. J Nat Cancer Inst 1969; 43: 763 73.
  • Hofer KG, Hughes WL. Radiotoxicity of intranuclear tritium, iodine-125, and iodine-131. Radiat Res 1971; 47: 94 109.
  • Feinendegen LE, Ertl HH, Bond VP. Biological toxicity associated with the Auger effect. In: Ebert H, ed. Proceedings of the Symposium on Biological Aspects of Radiation Quality. Vienna: IAEA, 1971: 419 30.
  • Ertl HH, Feinendegen LE, Heiniger HJ. Iodine-125, a tracer in cell biology: physical properties and biological aspects. Phys Med Biol 1970; 15: 447 56.
  • Burki HJ, Roots R, Feinendegen LE, Bond VP. Inactivation of mammalian cells after disintegration of 3H or 125I in cell DNA at ¼196 degrees C. Int J Radiat Biol 1973; 4: 363 75.
  • Bradley EW, Chan PC, Adelstein SJ. The radiotoxicity of mammalian cells. I. Effects on the survival curve of ra-dioiodine incorporated into DNA. Radiat Res 1975; 64: 555 63.
  • Krisch RE, Ley RD. Induction of lethality and DNA breakage by the decay of iodine-125 in bacteriophage T4. Int J Radiat Biol 1974; 25: 21 30.
  • Krisch RE, Krasin F, Sauri CJ. DNA breakage, repair, and lethality of 125I decay in rec + and recA strains of Escherichia coli. Int J Radiat Biol 1976; 29: 3750.
  • Hofer KG, Keough G, Smith JM. Biological toxicity of Auger emitters: molecular fragmentation vs. electron irradiation. Curr Top Radiat Res Q 1977; 12: 33554.
  • Charlton DE, Booz J. A Monte Carlo treatment of the decay of 125I. Radiat Res 1981; 87: 1023.
  • Hofer KG, Harris CR, Smith JM. Radiotoxicity of intracellular 67Ga, 125I, and 3H: nuclear versus cytoplasmic radiation effects in murine L1210 leukemia. Int J Radiat Biol 1975; 28: 22541.
  • Warters RL, Hofer KG, Harris CR, Smith JM. Radionuclide toxicity in cultured mammalian cells: elucidation of the primary target of radiation damage. Curr Top Radiat Res Q 1977; 12: 389407.
  • Kassis AI, Adelstein SJ, Haydock C, Sastry KSR. Radiotoxicity of Se-75 and S-35: theory and application to a cellular model. Radiat Res 1980; 84: 40725.
  • Painter RB, Young BR, Burki HJ. Non-repairable strand breaks induced by 125I incorporated into mammalian DNA. Proc Nat Acad Sci USA 1974; 71: 48368.
  • Miyazaki N, Fujiwara Y. Mutagenic and lethal effect of [5-125I]iodo-2'-deoxyuridine incorporated into DNA of mammalian cells, and their RBEs. Radiat Res 1981; 88: 45665.
  • Little JB, LeMotte PK, Liber HL. Quantitative studies of cytotoxicity, mutagenesis and oncologic transformation by radioisotopes incorporated into DNA. In: Harris CC, Auhup HN, eds. Human Carcinogenesis. New York: Academic Press, 1983: 54559.
  • Chan PC, Lisco E, Lisco H, Adelstein SJ. The radiotoxicity of iodine-125 in mammalian cells. II. A comparative study on cell survival and cytogenetic responses to 125IUdR, 131IUdR and 3H-TdR. Radiat Res 1976; 67: 32243.
  • Sundell-Bergman S, Bergman R, Johanson KJ. Chromosome damage induced by decay of 3H and 125I incorporated into DNA of Chinese hamster cells. Mutat Res 1985; 149: 25763.
  • Warters RL, Hofer KG. Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site for radiation-induced mitotic delay. Radiat Res 1977; 69: 34858.
  • Schneiderman MH, Hofer KG. The target for radiation-induced division delay. Radiat Res 1980; 84: 46276.
  • Martin RF, Haseltine WA. Range of radiochemical damage to DNA with decay of iodine-125. Science 1981; 213: 8968.
  • Adelstein SJ, Kassis AI. Strand breaks in plasmid DNA following positional changes of Auger-emitting radionuclides. Acta Oncol 1996; 35: 797801.
  • Kassis AI, Harapanhalli RS, Adelstein SJ. Comparison of strand breaks in plasmid DNA after positional changes of Auger electron-emitting iodine-125. Radiat Res 1999; 151: 16776.
  • Sahu SK, Kortylewicz ZP, Baranowska-Kortylewicz J, Taube RA, Adelstein SJ, Kassis AI. Strand breaks after the decay of iodine-125 in proximity to plasmid pBR322 DNA. Radiat Res 1997; 147: 4018.
  • Kassis AI, Harapanhalli RS, Adelstein SJ. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting iodine-125: direct versus indirect effects. Radiat Res 1999; 151: 5308.
  • Walicka MA, Adelstein SJ, Kassis AI. Indirect mechanisms contribute to biological effects produced by decay of DNA-incorporated iodine-125 in mammalian cells in vitro: double-strand breaks. Radiat Res 1998; 149: 13441.
  • Panyutin IG, Neumann RD. Sequence-specic DNA breaks produced by triplex-directed decay of iodine-125. Acta Oncol 1996; 35: 81723.
  • Panyutin IG, Neumann RD. Radioprobing of DNA: distribution of DNA breaks produced by decay of 125I incorporated into a triplex-forming oligonucleotide correlates with geometry of the triplex. Nucl Acid Res 1997; 25: 883 7.
  • Karamychev VN, Panyutin IG, Reed MW, Neumann RD. Effect of radionuclide linker structure on DNA cleavage by 125I-labeled oligonucleotides. Antisense Nucleic Acid Drug Dev 1997; 7: 549 57.
  • DeSombre ER, Hughes A, Landel CC, Greene G, Hanson R, Schwartz JL. Cellular and subcellular studies of the radiation effects of Auger electron-emitting estrogens. Acta Oncol 1996; 35: 833 40.
  • Schwatz JL, Musta R, Hughes A, DeSombre ER. DNA and chromosome breaks induced by iodine-123-labeled estrogen in Chinese hamster ovary cells. Radiat Res 1996; 146: 151 8.
  • Yasui LS, DeSombre ER. DNA damage induction by 125I-es-trogen. Acta Oncol 1996; 35: 841 7.
  • Charlton DE, Humm JL. A method of calculating initial DNA strand breakage following the decay of incorporated 125I. Int J Radiat Biol 1988; 53: 353 65.
  • Pomplun E. A new DNA target model for track structure calculations and its rst application to I-125 Auger electrons. Int J Radiat Biol 1991; 59: 625 42.
  • Terrissol M. Modelling of radiation-induced DNA damage: The early physical and chemical events. Int J Radiat Biol 1994; 66: 447 51.
  • Nikjoo H, O’Neill P, Terrissol M, Goodhead DT. Modelling of radiation-induced DNA damage: the early physical and chemical events. Int J Radiat Biol 1994; 66: 453 7.
  • Terrissol M. Modelling of radiation damage by 125I on a nucleosome. Int J Radiat Biol 1994; 66: 447 51.
  • Pomplun E, Terrissol M. Low-energy electrons inside active DNA models: a tool to elucidate the radiation action mechanisms. Radiat Environ Biophys 1994; 33: 279 92.
  • Pomplun E, Terrissol M, Demonchy M. Modelling of initial events and chemical behaviour of species induced in DNA units by Auger electrons from 125I, 123I and carbon. Acta Oncol 1996; 35: 857 62.
  • Jonkhoff AR, vDieren EB, Huijgens PC, et al. Biological effectiveness of 67-gallium in HL60 cells compared with external low dose rate gamma irradiation: effects on proliferation, G2 arrest, and clonogenic capacity. Int J Radiat Oncol Biol Phys 1994; 30: 117 24.
  • Narra VR, Howell RW, Harapanhalli RS, Sastry KSR, Rao DV. Radiotoxicity of some iodine-123, iodine-125, and iodine-131-labeled compounds in mouse testes: implications for radiopharmaceutical design. J Nucl Med 1992; 33: 2196 201.
  • Yasui LS, Hofer KG. Role of mitochondrial DNA in cell death induced by 125I decay. Int J Radiat Biol 1986; 49: 601 10.
  • Yasui LS, Hofer KG, Warters RL. Inhomogeneity of the nucleus to 125IUdR cytotoxicity. Radiat Res 1985; 102: 1 18.
  • Kassis AI, Fayad F, Kinsey BM, Sastry KSR, Adelstein SJ. Radiotoxicity of an I-125-labeled DNA intercalator in mammalian cells. Radiat Res 1989; 118: 283 94.
  • McLean RN, Wilkinson D. The radiation dose to cells in vitro from intracellular indium-111. Biochem Cell Biol 1989; 67: 661 5.
  • Rao DV, Sastry KSR, Grimmond HE, et al. Cytotoxicity of some indium radiopharmaceuticals in mouse testes. J Nucl Med 1988; 29: 375 84.
  • Sedelnikova OA, Panyutin IG, Thierry AR, Neumann RD. Radiotoxicity of iodine-125-labeled oligodeoxyribonucleotides in mammalian cells. J Nucl Med 1998; 39: 1412 8.
  • Rao DV, Narra VR, Howell RW, Lanka VK, Sastry KSR. Induction of spermhead abnormalities by incorporated ra-dionuclides: dependence on subcellular distribution, type of radiation, dose rate and presence of radioprotectors. Radiat Res 1991; 125: 89 97.
  • Narra VR, Harapanhalli RS, Howell RW, Sastry KSR, Rao DV. Vitamins as radioprotectors in vivo: I. Protection by vitamin C against internal radionuclides in mouse testes: implications to the mechanism of the Auger effect. Radiat Res 1994; 137: 394 9.
  • Narra VR, Harapanhalli RS, Goddu SM, Howell RW, Rao DV. Radioprotection against biological effects of internal radionuclides in vivo by S-(2-aminoethyl)isothioronium bromide hydrobromide (AET). J Nucl Med 1995; 36: 259 66.
  • Harapanhalli RS, Narra VR, Yaghmai V, et al. Vitamins as radioprotectors in vivo. II. Protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides. Radiat Res 1994; 139: 115 22.
  • Walicka MA, Adelstein SJ, Kassis AI. Indirect mechanisms contribute to biological effects produced by decay of DNA-incorporated iodine-125 in mammalian cells in vitro: clono-genic survival. Radiat Res 1998; 149: 142 6.
  • Bishayee A, Rao DV, Bouchet LG, Bolch WE, Howell RW. Protection by DMSO against cell death caused by intracellu-larly localized iodine-125, iodine-131, and polonium-210. Ra-diat Res 2000; 153 (in press).
  • Chapman JD. Biophysical models of mammalian cell inacti-vation by radiation. In: Meyn RE, Withers HR, eds. Radiation biology in cancer research. NY: Raven Press, 1980: 21 32.
  • Hofer KG, VanLoon N, Schneiderman MH, Charlton DE. The paradoxical nature of DNA damage and cell death induced by 125I decay. Radiat Res 1992; 130: 121 4.
  • Hofer KG, VanLoon N, Schneiderman MH, Charlton DE. High LET and low LET cytocidal effects of DNA-associated iodine-125. In: Howell RW, Narra VR, Sastry KSR, Rao DV, eds. Biophysical aspects of Auger processes. Woodburry, NY: American Institute of Physics, Inc, 1992: 227 48.
  • Hofer KG, Bao SP. Low-LET and high-LET radiation action of 125I decays in DNA: effect of cysteamine on micronucleus formation and cell death. Radiat Res 1995; 141: 183 92.
  • Hofer KG, Lin X, Bao SP. DNA damage, micronucleus formation, and cell death from 125I decays in DNA. Acta Oncol 1996; 35: 825 32.
  • Feinendegen LE. Biological damage from the Auger effect, possible bene ts. Radiat Environ Biophys 1975; 12: 85 99.
  • Koch CJ, Burki HJ. The oxygen-enhancementratio for reproductive death induced by 3H or 125I damage in mammalian cells. Int J Radiat Biol 1975; 5: 417 25.
  • Strand SE, Jonsson BA, Ljungberg M, Tennvall J. Radioim-munotherapy dosimetry a review. Acta Oncol 1993; 32: 807 17.
  • Humm JL, Howell RW, Rao DV. Dosimetry of Auger-electron emitting radionuclides: report No. 3 of the AAPM Nuclear Medicine Task Group No. 6. Med Phys 1994; 21: 1901 15.
  • Humm JL, Macklis RM, Lu XQ, et al. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed tissue autoradiographs. Phys Med Biol 1995; 40: 163 80.
  • Howell RW, Rao DV, Sastry KSR. Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors. Med Phys 1989; 16: 66 74.
  • Hofer KG. Biophysical aspects of Auger processes: a review. Acta Oncol 1996; 35: 789 96.
  • Wheldon TE. Targeting radiation to tumours. Int J Radiat Biol 1994; 65: 109 15.
  • Behr TM, Sgouros G, Vougiokas V, et al. Therapeutic ef -cacy and dose-limiting toxicity of Auger-electron vs. beta emitters in radioimmunotherapy with internalizing antibodies: evaluation of 125I vs. 131I-labeled CO17-1A in a human col-orectal cancer model. Int J Cancer 1998; 76: 738 48.
  • McLaughlin WH, Milius RA, Pillai KMR, Edasery JP, Blu-menthal RD, Bloomer WD. Cytotoxicity of receptor-mediated 16a [125I]iodo-estradiol in cultured MCF-7 human breast cancer cells. J Nat Cancer Inst 1989; 81: 437 40.
  • DeSombre ER, Sha B, Hanson RN, Kiuvanen PC, Hughes A. Estrogen receptor-directed radiotoxicity with Auger electrons: speci city and mean lethal dose. Cancer Res 1992; 52: 5752 8.
  • Kearney T, Hughes A, Hanson RN, DeSombre ER. Ra-diotoxicity of Auger electron-emitting estrogens in MCF-7 spheroids: a potential treatment for estrogen receptor-positive tumors. Radiat Res 1999; 151: 570 9.
  • Klecker RW Jr, Jenkins JF, Kinsella TJ, Fine RL, Strong JM, Collins JM. Clinical pharmacology of 5-iodo-2Æ-deoxyuridine and 5-iodouracil and endogenous pyrimidine modulation. Clin Pharmacol Ther 1985; 38: 45 51.
  • Kassis AI, Wen PY, Van den Abbeele AD, et al. 5-[125I]iodo-2Æ-deoxyuridine in the radiotherapy of brain tumors in rats. J Nucl Med 1998; 39: 1148 54.
  • Van den Abbeele AD, Tutrone RF, Berman RM, et al. Tumor-targeting potential of radioiodinated iodo-deoxyuridine in bladder cancer. J Nucl Med 1996; 37: 315 20.
  • Sahu SK, Wen PYC, Foulon CF, et al. Intrathecal 5-[125I]iodo-2Æ-deoxyuridine in a rat model of leptomeningeal metastases. J Nucl Med 1997; 38: 386 90.
  • Mariani G, Sacco SD, Volterrani D, et al. Tumor targeting by intra-arterial infusion of 5-[123I]iodo-2Æ-deoxyuridine in patients with liver metastases from colorectal cancer. J Nucl Med 1996; 37: 22S 5S.
  • Kassis AI, Tumeh SS, Wen PYC, et al. Intratumoral administration of 5-[123I]iodo-2Æ-deoxyuridine in a patient with brain tumor. J Nucl Med 1996; 37: 19S 22S.
  • Schneiderman MH, Jackson JD, Joshi SS, Clark-Pierce L, Murphy BJ, Schneiderman GS. Cell cycle-based purging of lymphoma cells from bone marrow harvests using radioiodi-nated 5-iodo-2Æ-deoxyuridine. Radiat Res 1998; 149: 147 54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.