788
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Developments in Radiotherapy

&
Pages 430-442 | Published online: 08 Jul 2009

References

  • Mattsson S, Brahme A, Carlsson J, et al. Swedish Cancer Society radiation therapy research investigation. Acta Oncol 2002; 41: 596–603.
  • Zackrisson B, Kjellén E, Glimelius B, Carlsson J, Littbrand B, Turesson I, and the Swedish Cancer Society Investigation Group. Sensitising and protective substances in radiotherapy and predictive assays. Acta Oncol 2002; 41: 615–22.
  • Zackrisson B, Mattsson S, Kjellén E, Glimelius B, and the Swedish Cancer Society Investigation Group. Research and development of radiation therapy in clinical routines. Acta Oncol 2003; 42: 115–22.
  • Glimelius B, Nordenskjöld B, Kjellén E, Zackrisson B, and the Swedish Cancer Society Investigation Group. Interactions between chemotherapy, endocrine therapy and radiation. Acta Oncol 2002; 41: 635–8.
  • Strandqvist M. Studien tiber die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung. Acta Radiol 1944; (Suppl 55): 1–300.
  • Kellerer AM, Rossi HH. The theory of dual radiation action. Curr Top Radiat Res Quarterly 1972; 8: 85–158.
  • Chadwick KH, Leenhouts HP. A molecular theory of cell survival. Phys Med Biol 1973; 18: 78–87.
  • Pohlit W, Heyder IR. The shape of dose-survival curves for mammalian cells and repair of potentially lethal damage analyzed by hypertonic treatment. Radiat Res 1981; 87: 613–34.
  • Tobias CA. The repair-misrepair model in radiobiology: comparison to other models. Radiat Res 1985; 104: 77–95.
  • Curtis SB. Lethal and potentially lethal lesions induced by radiation - a unified repair model. Radiat Res 1986; 106: 252–70.
  • Chadwick KH, Leenhouts HP. Radiation induced chromosome aberrations: some biophysical considerations. Mutat Res 1998; 404: 113–7.
  • Barendsen GW. Dose fractionation, dose rate, and isoeffect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 1982; 8: 1981–97.
  • Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 1989; 62: 679–94.
  • Denekamp J. Changes in the rate of repopulation during multifraction irradiation of mouse skin. Br J Radiol 1973; 46: 381–7.
  • Fowler JF. Potential for increasing the differential response between tumors and normal tissues: can proliferation rate be used? Int J Radiat Oncol Biol Phys 1986; 12: 641–5.
  • Nilsson P, Thames HD, Joiner MC. A generalized formulation of the 'incomplete-repair' model for cell survival and tissue response to fractionated low dose-rate irradiation. Int J Radiat Biol 1990; 57: 127–42.
  • Tucker SL, Travis E. Comments on a time-dependent version of the linear-quadratic model. Radiother Oncol 1990; 18: 155–63.
  • Joiner MC, van der Kogel AJ. The linear-quadratic approach to fractionation and calculation of isoeffect relationships. In: Steel GG, ed. Basic clinical radiobiology, 2nd ed. London: Arnold; 1997. p. 106–21.
  • Withers HR, Taylor JMG, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 1988; 27: 131–46.
  • Tucker SL. Pitfalls in estimating the influence of overall treatment time on local tumor control. Acta Oncol 1999; 38: 171–8.
  • Joiner MC, Denekamp J, Maughan RL. The use of 'top-up' experiments to investigate the effect of very small doses per fraction in mouse skin. Int J Radiat Biol 1986; 49: 565–80.
  • Lambin P, Malaise EP, Joiner MC. The effect of very low radiation doses on the human bladder carcinoma cell line RT112. Radiother Oncol 1994; 32: 63–72.
  • Turesson I, Bernefors R, Book M, et al. Normal tissue response to low doses of radiotherapy assessed by molecular markers. A study of skin in patients treated for prostate cancer. Acta Oncol 2001; 40: 941–51.
  • Wouters BG, Skarsgard LD. The response of a human tumor cell line to low radiation doses: evidence of enhanced sensitiv-ity. Radiat Res 1994; 138: S76–80.
  • Lind BK, Persson LM, Edgren MR, Hedlof I, Brahme A. Repairable conditionally repairable damage model based on dual Poisson processes. Radiat Res 2003 (in press).
  • Turesson I, Carlsson J, Brahme A, Glimelius B, Zackrisson B, Stenerlöw B, and the Swedish Cancer Society Investigation Group. Biological response to radiation therapy. Acta Oncol 2003; 42: 92–106.
  • Johansson K-A, Mattsson S, Brahme A, Carlsson J, Zackrisson B, Turesson I, and the Swedish Cancer Society Investigation Group. Radiation therapy dose delivery. Acta Oncol 2003; 42: 85–91.
  • Brahme A. Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 1984; 23: 379–91.
  • Agren-Cronquist AK. Qualification of the response of hetero-geneous tumours and organized tissues to fractionated radio-therapy: Stockholm University. Thesis; 1995.
  • Agren-Cronquist A-K, Källman P, Turesson I, et al. Volume and heterogeneity dependence of dose-response relationship for head and neck tumours. Acta Oncol 1995; 34: 851–60.
  • Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21: 109–22.
  • van der Kogel AJ. Radiation response and tolerance of normal tissues. In: Steel G, ed. Basic clinical radiobiology. 2nd ed. London: Arnold, 1997. p. 30–40.
  • Johansson S, Svensson H, Larsson LG, Denekamp J. Brachial plexopathy after postoperative radiotherapy of breast cancer patients - a long-term follow-up. Acta Oncol 2000; 39: 373–82.
  • Barrett A. Recording of late morbidity. Radiother Oncol 2000; 57: S51.
  • Withers HR, Taylor JMG, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 1988; 14: 751–9.
  • Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Rad Biol 1992; 62: 249–62.
  • Källman P. Optimization of radiation therapy planning using physical and biological objective functions. Thesis Med Radia-tion Physics, Stockholm University 1992: 1–40.
  • Lof J. Development of a general framework for optimization of radiation therapy. Thesis Med Radiation Physics: Stockholm University; 2000: 1–43.
  • Churchill-Davidsson I. The oxygen effect in radiotherapy - historical review. Front Radiat Ther Oncol 1968; 1: 1–15.
  • Overgaard J, Horsman MR. Overcoming hypoxic cell radio-resistance. In: Steel G, ed. Basic clinical radiobiology. 2nd ed. London: Arnold, 1997. p. 141–51.
  • Withers HR. The four R's of radiotherapy. Adv Radiat Biol 1975; 5: 241–7.
  • Littbrand B, Edsmyr F, Revesz L. A low dose-fractionation scheme for the radiotherapy of carcinoma of the bladder. Experimental background and preliminary results. Bull Cancer 1975; 62: 241–8.
  • Dasu A, Denekamp J. Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction. Int J Radiat Oncol Biol Phys 1999; 43: 1083–94.
  • Joiner C. Hyperfractionation and accelerated radiotherapy. In Steel G, ed. Basic clinical radiobiology. 2nd ed. London: Arnold, 1997. p. 123–31.
  • Fowler J. Biological factors influencing optimum fractionation in radiation therapy. Acta Oncol 2001; 40: 712–7.
  • Denekamp J, Dasu A. Inducible repair and the two forms of tumour hypoxia - time for a paradigm shift. Acta Oncol 1999; 38: 903–18.
  • AAPM Task group 50. Basic applications of multileaf colli-mators. AAPM Report No 72; 2001: 1–54.
  • Brahme A. Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 1988; 12: 129–40.
  • Muren LP, Mella O, Hafslund R, Dahl O. Norwegian oncologists' expectations of intensity-modulated radiotherapy. Acta Oncol 2002; 41: 562–5.
  • Karlsson MG, Karlsson M, Ma CM. Treatment head design for multileaf collimated high-energy electrons. Med Phys 1999; 26: 2161–7.
  • Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993; 20: 1709–19.
  • Svensson R. Development of a compact high energy treatment unit combining narrow pencil beam scanning and multileaf collimation: Thesis Med Radiat Physics, Stockholm University; 1998: 1–37.
  • Forssell-Aronsson E, Kjellén E, Mattsson S, Hellstrom M, and the Swedish Cancer Society Investigation Group. Medical imaging for improved tumour characterisation, delineation and treatment verification. Acta Oncol 2002; 41: 604–14.
  • Kessler ML, Ten Haken RK. Use of MRI data for treatment planning. In: Hazle JD, Boyer AL, eds. Imaging radiation therapy. Medical physics monograph. Madison, WI, USA: Med Phys Publishing; 1998. p. 313–40.
  • Rosenman JG, Miller EP, Tracton G, Cullip TJ. Image registration: an essential part of radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 1998; 40: 197–205.
  • Chapman JD, Schneider RF, Urbain JL, Hanks GE. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation. Semin Radiat Oncol 2001; 11:47–57.
  • Olive PL, Bandth JP, Aquino-Parsons C. Measuring hyopoxia in solid tumours. Is there a gold standard? Acta Oncol 2001; 40: 917–23.
  • Chang J, Mageras GS, Ling CC, Lutz W. An iterative EPID calibration procedure for dosimetric verification that considers the EPID scattering factor. Med Phys 2001; 28: 2247–57.
  • Gross M, Pavlovic M, eds. Proposal for a dedicated ion beam facility for cancer therapy. Universitätsklinik Heidelberg DKH: Gesellschaft for Schwerionenforschung Darmstadt, 1998; 1–98.
  • Brahme A. Biologically optimized 3-dimensional in vivo predictive assay based radiation therapy using positron emis-sion tomography-computerized tomography imaging. Acta Oncol 2003; 42: 123–36.
  • Poljanc K, Auberger T. Derzeitiger Stand der Protonen- und Leichtionentherapie in der Welt. In: Potter R, Augberger T, Regler M, eds. Med Austron em n Osterreichisches Krebs-forschung- und Behandlungszentrum zur Hadronentherapie in Europa, Band 1. Wien: 1998. p. 123–8.
  • Stone MR. Neutron therapy and specific ionization. Am J Roentgenol 1948; 59: 771–85.
  • Richard F, Wambersie A. Fast neutrons and the LET-factor. In: Amaldi U, Larsson B, eds. Hadrontherapy in Oncology. Excerpta Medica 1994: 173–98.
  • Brahme A, Lewensohn R, Ringborg U, Amaldi UFG, Rossi S. Design of a centre for biologically optimised light ion therapy in Stockholm. Nucl Inst Meth B 2001; 184: 569–88.
  • Gerard JP, Remillieux J, Rochat J, Lieuvin F, Terrien Y. ETOILE Project (European Light Ion Oncological Centre), Rapport LYCEN 2002–01 (A, B, C), Université Claude Bernard Lyon CNRS/IN2P3/IPNL. p. 1–73.
  • Auberger T, Griesmayer E, Potter R. Med. Austron: Statusber-icht 2002.
  • Tsujii H, Morita S, Miyamoto T, et al. Preliminary results of phase 1/2 carbon-ion therapy at the national institute of radiological sciences. J Brachyther Int 1997; 13: 1–8.
  • Yamada S. The progress of HIMAC and particle therapy facilities. Chiba, Japan: National Institute of Radiological Sciences; 2001. p. 1–5.
  • Tsujii H, Morita S, Miyamoto T, et al. Experiences of carbon ion radiotherapy at NIRS National Institute of Radiological Sciences. Chiba, Japan: National Institute of Radiological Sciences; 2001. p. 1–10.
  • Lorcher GL. Biological effects and therapeutic possibilities of neutrons. AJR 1936; 36: 1–13.
  • Carlsson J, Forsell-Aronsson E, Mattsson S, Glimelius B, and the Swedish Cancer Society Investigation Group. Radiation therapy through activation of stable nuclides. Acta Oncol 2002; 41: 629–34.
  • Schulz RJ. Further improvements in dose distributions are unlikely to affect cure rates. Med Phys 1999; 26: 1007–9.
  • Schulz RJ, Kagan AR. On the role of intensity-modulated radiation therapy in radiation oncology. Med Phys 2002; 29: 1473–82.
  • Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002; 53: 1097–105.
  • Widmark A, Fransson P, Franzen L, Littbrand B, Henriksson R. Daily-diary evaluated side effects of conformal versus conventional prostatic cancer radiotherapy technique. Acta Oncol 1997; 36: 499–507.
  • Hanks GE, Hanlon AL, Pinover WH, Horwitz EM, Schultheiss TE. Survival advantage for prostate cancer patients treated with high-dose three-dimensional conformal radio-therapy. Cancer J Sci Am 1999; 5: 152–8.
  • Hendee WR. Moderator point/counterpoint). Intensity-modu-lated conformal radiation therapy and 3-dimensional treatment planning will significantly reduce the need for therapeutic approaches with particles such as protons. Med Phys 1999; 26: 1185.
  • Mackie TR. For the proposition. Med Phys 1999; 26: 1186.
  • Smith AR. Against the proposition. Med Phys 1999; 26: 1187.
  • Brahme A. Development of radiation therapy optimization. Acta Oncol 2000; 39: 579–95.
  • Karlsson M, Zackrisson B. Matching of electron and photon beams with a multi-leaf collimator. Radiother Oncol 1993; 29: 317–26.
  • Brahme A, Nilsson J, Belkic D. Biologically optimized radia-tion therapy. Acta Oncol 2001; 40: 725–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.