1,962
Views
23
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES: RADIATION THERAPY

First fully automated planning solution for robotic radiosurgery – comparison with automatically planned volumetric arc therapy for prostate cancer

, ORCID Icon, , , &
Pages 1490-1498 | Received 01 Jun 2017, Accepted 14 May 2018, Published online: 02 Jul 2018

References

  • Brenner D, Hall E. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 1999;43:1095–1101.
  • Madsen B, Hsi R, Pham H, et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (sharp), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007;67:1009–1105.
  • Boike T, Lotan Y, Cho L, et al. Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. JCO. 2011;29:2020–2026.
  • Jabbari S, Weinberg V, Kaprealian T, et al. Stereotactic body radiotherapy as monotherapy or post-external beam radiotherapy boost for prostate cancer: technique, early toxicity, and PSA response. Int J Radiat Oncol Biol Phys. 2012;82:228–234.
  • Fuller D, Mardirossian G, Wong D, et al. Prospective Evaluation of Stereotactic Radiotherapy for Low and Intermediate Risk Prostate Cancer: Emulating HDR Brachytherapy Dose Distribution. Int J Radiat Oncol Biol Phys. 2010;78:S358–S359.
  • Freeman D, King C. Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol. 2011;6:3.
  • Aluwini S, van Rooij P, Hoogeman M, et al. Stereotactic body radiotherapy with a focal boost to the MRI-visible tumor as monotherapy for low- and intermediate-risk prostate cancer: early results. Radiat Oncol. 2013;24:1–7.
  • King C, Freeman D, Kaplan I, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol. 2013;109:217–221.
  • Katz AJ, Santoro M, Diblasio F, et al. Stereotactic body radiotherapy for localized prostate cancer: disease control and quality of life at 6 years. Radiat Oncol. 2013;8:118.
  • Van de W, Valli L, Aluwini S, et al. Intrafraction prostate translations and rotations during hypofractionated robotic radiation surgery: dosimetric impact of correction strategies and margins. Int J Radiat Oncol Biol Phys. 2014;88:1154–1160.
  • Willoughby T, Kupelian P, Pouliot J, et al. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2006;65:528–534.
  • Kupelian P, Willoughby T, Mahadevan A, et al. Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67:1088–1098.
  • Keall P, Ng J, Juneja P, et al. Real-time 3D image guidance using a standard LINAC: measured motion, accuracy, and precision of the first prospective clinical trial of kilovoltage intrafraction monitoring-guided gating for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2016;94:1015–1021.
  • Dong P, Nguyen D, Ruan D, et al. Feasibility of prostate robotic radiation therapy on conventional C-arm linacs. Pract Radiat Oncol. 2014;4:254–260.
  • Rossi L, Breedveld S, Heijmen BJM, et al. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT – prostate SBRT. Phys Med Biol. 2012;57:5441–5458.
  • MacDougall N, Dean C, Muirhead R. Stereotactic body radiotherapy in prostate cancer: is rapidarc a better solution than Cyberknife? Clin Oncol (R Coll Radiol). 2014;26:4–9.
  • Lin Y, Lin K, Ho H, et al. Treatment plan comparison between stereotactic body radiation therapy techniques for prostate cancer: non-isocentric CyberKnife versus isocentric RapidArc. Phys Med. 2014;30:654–661.
  • Breedveld S, Storchi P, Voet P, et al. iCycle: integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys. 2012;39:951–963.
  • Voet P, Dirkx M, Breedveld S, et al. Fully automated volumetric modulated arc therapy plan generation for prostate cancer patients. Int J Radiat Oncol Biol Phys. 2014;88:1175–1179.
  • Zhang X, Li X, Quan EM, et al. A methodology for automatic intensity-modulated radiation treatment planning for lung cancer. Phys Med Biol. 2011;56:3873–3893.
  • Quan E, Chang J, Liao Z, et al. Automated volumetric modulated Arc therapy treatment planning for stage III lung cancer: how does it compare with intensity-modulated radio therapy? Int J Radiat Oncol Biol Phys. 2012;84:e69–e76.
  • Purdie TG, Dinniwell RE, Fyles A, et al. Automation and intensity modulated radiation therapy for individualized high-quality tangent breast treatment plans. Int J Radiat Oncol Biol Phys. 2014;90:688–695.
  • Wu B, Pang D, Lei S, et al. Improved robotic stereotactic body radiation therapy plan quality and planning efficacy for organ-confined prostate cancer utilizing overlap-volume histogram-driven planning methodology. Radiother Oncol. 2014;112:221–226.
  • Zarepisheh M, Long T, Li N, et al. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning. Med Phys. 2014;41:061711.
  • Krayenbuehl J, Norton I, Studer G, et al. Evaluation of an automated knowledge based treatment planning system for head and neck. Radiat Oncol. 2015;10:226.
  • Tol J, Dahele M, Delaney A, et al. Detailed evaluation of an automated approach to interactive optimization for volumetric modulated arc therapy plans. Med Phys. 2016;43:1818.
  • Sharfo A, Breedveld S, Voet P, et al. Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy. PLoS ONE. 2016;11:e0169202.
  • Voet P, Dirkx M, Breedveld S, et al. Towards fully automated multi-criterial plan generation: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2013;85:866–872.
  • Sharfo A, Voet P, Breedveld S, et al. Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning. Radiother Oncol. 2015;114:395–401.
  • Heijkoop S, Langerak T, Quint S, et al. Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT. Int J Radiat Oncol Biol Phys. 2014;90:673–679.
  • Della Gala G, Dirkx MLP, Hoekstra N, et al. Fully automated VMAT treatment planning for advanced-stage NSCLC patients. Strahlenther Onkol. 2017;193:402–409.
  • Van de Water S, Hoogeman MS, Breedveld S, et al. Shortening treatment time in robotic radiosurgery using a novel node reduction technique. Med Phys. 2011;38:1397–1405.
  • Michalski J, Gay H, Jackson A, et al. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010;76:S123–S129.
  • Hansen CR, Bertelsen A, Hazell I, et al. Automatic treatment planning improves the clinical quality of head and neck cancer treatment plans. Clin Transl Radiat Oncol. 2016;1:2–8.
  • Fogliata A, Belosi F, Clivio A, et al. On the pre-clinical validation of a commercial model-based optimisation engine: application to volumetric modulated arc therapy for patients with lung or prostate cancer. Radiother Oncol. 2014;113:385–391.
  • Nelms BE, Robinson G, Markham J, et al. Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract Radiat Oncol. 2012;2:296–305.
  • Berry SL, Boczkowski A, Ma R, et al. Interobserver variability in radiation therapy plan output: results of a single-institution study. Pract Radiat Oncol. 2016;6:442–449.
  • Berry SL, Ma R, Boczkowski A, et al. Evaluating inter-campus plan consistency using a knowledge based planning model. Radiother Oncol. 2016;120:349–355.
  • Linthout N, Verellen D, Tournel K, et al. Assessment of secondary patient motion induced by automated couch movement during on-line 6 dimensional repositioning in prostate cancer treatment. Radiother Oncol. 2007;83:168–174.
  • Fürweger C, Prins P, Coskan H, et al. Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys. 2016;43:2063.
  • Asmerom G, Bourne D, Chappelow J, et al. The design and physical characterization of a multileaf collimator for robotic radiosurgery. Biomed Phys Eng Express. 2016;2:017003.
  • McGuinness C, Gottschalk A, Lessard E, et al. Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients. J Appl Clin Med Phys. 2015;16:284–295.
  • Kathriarachchi V, Shang C, Evans G, et al. Dosimetric and radiobiological comparison of CyberKnife M6 InCise multileaf collimator over Iris variable collimator in prostate stereotactic body radiation therapy. J Med Phys. 2016;41:135–143.
  • Jang S, Lalonde R, Ozhasoglu C, et al. Dosimetric comparison between cone/Iris-based and InCise MLC-based CyberKnife plans for single and multiple brain metastases. J Appl Clin Med Phys. 2016;17:184–199.
  • Van de Water S, Hoogeman MS, Breedveld S, et al. Variable circular collimator in robotic radiosurgery: a time-efficient alternative to a mini-multileaf collimator? Int J Radiat Oncol Biol Phys. 2011;81:863–870.