1,298
Views
9
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES: SURVIVORSHIP AND PATIENT PERSPECTIVES

The impact of training and professional collaboration on the interobserver variation of lung cancer delineations: a multi-institutional study

, , , &
Pages 200-208 | Received 03 May 2018, Accepted 23 Sep 2018, Published online: 30 Oct 2018

References

  • Vinod SK, Jameson MG, Min M, et al. Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies. Radiother Oncol. 2016;121:169–179.
  • Steenbakkers RJHM, Duppen JC, Fitton I, et al. Observer variation in target volume delineation of lung cancer related to radiation oncologist–computer interaction: a ‘Big Brother’ evaluation. Radiother Oncol. 2005;77:182–190.
  • Aznar MC, Persson GF, Kofoed IM, et al. Irregular breathing during 4DCT scanning of lung cancer patients: is the midventilation approach robust? Phys Medica. 2014;30:69–75.
  • Konert T, Vogel W, MacManus M, et al. Multiple training interventions significantly improves PET/CT based lung cancer radiotherapy target volume delineation following an IAEA based delineation protocol. Radiother Oncol. 2016;121:39–45.
  • Pepek JM, Marks LB, Berry MF, et al. Accuracy of positron emission tomography in identifying hilar (N1) lymph node involvement in non-small cell lung cancer: implications for stereotactic body radiation therapy. Pract Radiat Oncol. 2015;5:79–84.
  • Li X, Zhang H, Xing L, et al. Mediastinal lymph nodes staging by 18F-FDG PET/CT for early stage non-small cell lung cancer: a multicenter study. Radiother Oncol. 2012;102:246–250.
  • Lu P, Sun Y, Sun Y, et al. The role of (18)F-FDG PET/CT for evaluation of metastatic mediastinal lymph nodes in patients with lung squamous-cell carcinoma or adenocarcinoma. Lung Cancer. 2014;85:53–58.
  • Steenbakkers RJHM, Duppen JC, Fitton I, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol. 2006;64:435–448.
  • Konert T, Vogel W, MacManus MP, et al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother Oncol. 2015;116:27–34.
  • Truong MT, Kovalchuk N. Radiotherapy planning. PET Clin. 2015;10:279–296.
  • Valentini V, Boldrini L, Damiani A, et al. Recommendations on how to establish evidence from auto-segmentation software in radiotherapy. Radiother Oncol. 2014;112:317–320.
  • Jameson MG, Kumar S, Vinod SK, et al. Correlation of contouring variation with modeled outcome for conformal non-small cell lung cancer radiotherapy. Radiother Oncol. 2014;112:332–336.
  • Lo AC, Liu M, Chan E, et al. The impact of peer review of volume delineation in stereotactic body radiation therapy planning for primary lung cancer: a multicenter quality assurance study. J Thorac Oncol. 2014;9:527–533.
  • Song Y, Chan M, Burman C, et al. Inter-modality variation in gross tumor volume delineation in 18FDG-PET guided IMRT treatment planning for lung cancer. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3803–3806.
  • Hanna GG, Carson KJ, Lynch T, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist? Int J Radiat Oncol Biol Phys. 2010;78:1040–1051.
  • De Bari B, Dahele M, Palmu M, et al. Short interactive workshops reduce variability in contouring treatment volumes for spine stereotactic body radiation therapy: experience with the ESTRO FALCON programme and EduCaseTM training tool. Radiother Oncol. 2018;127:150–153.
  • Eriksen JG, Salembier C, Rivera S, et al. Four years with FALCON - an ESTRO educational project: achievements and perspectives. Radiother Oncol. 2014;112:145–149.
  • van Herk M, De Jaeger K, de Munck J, et al. A delineation system for N modalities — software aspects. Use Comput. Radiat. Ther., Berlin, Heidelberg: Springer Berlin Heidelberg; 2000, p. 73–75.
  • Fitton I, Steenbakkers RJHM, Gilhuijs K, et al. Impact of anatomical location on value of CT-PET co-registration for delineation of lung tumors . Int J Radiat Oncol Biol Phys. 2008;70:1403–1407.
  • Jameson MG, Holloway LC, Vial PJ, et al. A review of methods of analysis in contouring studies for radiation oncology. J Med Imaging Radiat Oncol. 2010;54:401–410.
  • The Royal College of Radiologists. Radiotherapy target volume definition and peer review RCR guidance. 2017.
  • Caravatta L, Macchia G, Mattiucci G, et al. Inter-observer variability of clinical target volume delineation in radiotherapy treatment of pancreatic cancer: a multi-institutional contouring experience. Radiat Oncol. 2014;9:198.
  • van Baardwijk A, Bosmans G, Boersma L, et al. PET-CT–based auto-contouring in non–small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol. 2007;68:771–778.
  • Bayne M, Hicks RJ, Everitt S, et al. Reproducibility of “intelligent” contouring of gross tumor volume in non–small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol. 2010;77:1151–1157.
  • Petit SF, Aerts HJWL, van Loon JGM, et al. Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer (NSCLC): an exploratory clinical study. Radiother Oncol. 2009;91:393–398.
  • Giraud P, Elles S, Helfre S, et al. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol. 2002;62:27–36.
  • Radiotherapy Oncology Group. Lung Atlas: RTOG 1106 Target Atlas n.d. https://www.rtog.org/CoreLab/ContouringAtlases/LungAtlas.aspx (accessed March 22, 2018).
  • Cui Y, Chen W, Kong F-M, et al. Contouring variations and the role of atlas in non-small cell lung cancer radiation therapy: analysis of a multi-institutional preclinical trial planning study. Pract Radiat Oncol. 2015;5:e67–e75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.