4,311
Views
24
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLES: NORDIC ASSOCIATION FOR CLINICAL PHYSICS THEME ISSUE

Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1399-1406 | Received 13 May 2021, Accepted 23 Jun 2021, Published online: 15 Jul 2021

References

  • Grégoire V, Grau C, Lapeyre M, et al. Target volume selection and delineation (t and n) for primary radiation treatment of oral cavity, oropharyngeal, hypopharyngeal and laryngeal squamous cell carcinoma. Oral Oncol. 2018;87:131–137.
  • Vinod SK, Jameson MG, Min M, et al. Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies. Radiother Oncol. 2016;121(2):169–179.
  • Sanguineti G, Foppiano F, Marcenaro M, et al. On the delineation of the gross tumor volume and clinical target volume for head and neck squamous cell carcinomas. Tumori. 2001;87(3):152–161.
  • Grégoire V, Evans M, Le QT, et al. Delineation of the primary tumour clinical target volumes (ctv-p) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: Airo, caca, dahanca, eortc, georcc, gortec, hknpcsg, hncig, iag-kht, lprhht, ncic ctg, ncri, nrg oncology, phns, sbrt, somera, sro, sshno, trog consensus guidelines. Radiother Oncol. 2018;126(1):3–24.
  • Bondue C, Racadot S, Coutte A, et al. Volumetric and dosimetric comparison of two delineation guidelines for the radiation treatment of laryngeal squamous cell carcinoma. Clin Transl Radiat Oncol. 2019;19:1–11.
  • Bashkatov A, Hossain S, Yang X, et al. Publications repository-helmholtz-zentrum dresden-rossendorf. Radiother Oncol Phys Rev Lett. 2019;123(Sup 1):214503.
  • Vinod SK, Min M, Jameson MG, et al. A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology. J Med Imaging Radiat Oncol. 2016;60(3):393–406.
  • Jensen K, Friborg J, Hansen CR, et al. The danish head and neck cancer group (dahanca) 2020 radiotherapy guidelines. Radiother Oncol. 2020;151:149–151.
  • Isensee F, Jaeger PF, Kohl SA, et al. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–211.
  • Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–3440.
  • Milletari F, Navab N, Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV); 2016. p. 565–571.
  • Li X, Chen H, Qi X, et al. H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes. IEEE Trans Med Imaging. 2018;37(12):2663–2674.
  • Simpson AL, Antonelli M, Bakas S, et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. CoRR. 2019;abs/1902.09063. Available from: http://arxiv.org/abs/1902.09063.
  • Andrearczyk V, Oreiller V, Jreige M, et al. Overview of the hecktor challenge at miccai 2020: automatic head and neck tumor segmentation in pet/ct. In: 3D Head and Neck Tumor Segmentation in PET/CT Challenge; Springer; 2020. p. 1–21.
  • Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention; Springer; 2015. p. 234–241.
  • Çiçek Ö, Abdulkadir A, Lienkamp SS, et al. 3d u-net: learning dense volumetric segmentation from sparse annotation. In: International conference on medical image computing and computer-assisted intervention; Springer; 2016. p. 424–432.
  • Moe YM, Groendahl AR, Tomic O, et al. Deep learning-based auto-delineation of gross tumour volumes and involved nodes in pet/ct images of head and neck cancer patients. Eur J Nucl Med Mol Imaging. 2021. DOI:https://doi.org/10.1007/s00259-020-05125-x
  • Andrearczyk V, Oreiller V, Vallières M, et al. Automatic segmentation of head and neck tumors and nodal metastases in pet-CT scans. In: Medical imaging with deep learning; 2020.
  • Clark K, Vendt B, Smith K, et al. The cancer imaging archive (tcia): maintaining and operating a public information repository. J Digit Imaging. 2013;26(6):1045–1057.
  • Li Q, Xu Y, Chen Z, et al. Tumor segmentation in contrast-enhanced magnetic resonance imaging for nasopharyngeal carcinoma: deep learning with convolutional neural network. Biomed Res Int. 2018;2018:9128527.
  • Yu L, Yang X, Chen H, et al. Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d mr images. In: Thirty-first AAAI conference on artificial intelligence; 2017.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–778.
  • Zhu W, Huang Y, Zeng L, et al. Anatomynet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys. 2019;46(2):576–589.
  • Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision; 2017. p. 2980–2988.
  • Guo Z, Guo N, Gong K, et al. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Phys Med Biol. 2019;64(20):205015.
  • Klein S, Staring M, Murphy K, et al. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29(1):196–205.
  • Fortunati V, Verhaart RF, Angeloni F, et al. Feasibility of multimodal deformable registration for head and neck tumor treatment planning. Int J Radiat Oncol Biol Phys. 2014;90(1):85–93.
  • Fort S, Hu H, Lakshminarayanan B. Deep ensembles: a loss landscape perspective. arXiv preprint. 2020. abs/1912.02757. Available from: https://arxiv.org/abs/1912.02757.
  • Gudi S, Ghosh-Laskar S, Agarwal JP, et al. Interobserver variability in the delineation of gross tumour volume and specified organs-at-risk during imrt for head and neck cancers and the impact of fdg-pet/ct on such variability at the primary site. J Med Imaging Radiation Sci. 2017;48(2):184–192.
  • Apolle R, Appold S, Bijl HP, et al. Inter-observer variability in target delineation increases during adaptive treatment of head-and-neck and lung cancer. Acta Oncol. 2019;58(10):1378–1385.
  • Carter KR, Kotlyarov E. Common causes of false positive f18 fdg pet/ct scans in oncology. Braz Arch Biol Technol. 2007;50(spe):29–35.
  • Kresnik E, Mikosch P, Gallowitsch H, et al. Evaluation of head and neck cancer with 18 f-fdg pet: a comparison with conventional methods. Eur J Nucl Med. 2001;28(7):816–821.
  • Kendall A, Gal Y. What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS; 2017.
  • Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. arXiv preprint. 2016. abs/1612.01474. Available from: https://arxiv.org/abs/1612.01474.
  • Isensee F, Petersen J, Klein A, et al. nnu-net: Self-adapting framework for u-net-based medical image segmentation. CoRR. 2018. abs/1809.10486. Available from: http://arxiv.org/abs/1809.10486.
  • Wang Y, Zhao L, Wang M, et al. Organ at risk segmentation in head and neck ct images using a two-stage segmentation framework based on 3d u-net. IEEE Access. 2019;7:144591–144602.
  • Wang C, MacGillivray T, Macnaught G, et al. A two-stage u-net model for 3d multi-class segmentation on full-resolution cardiac data. In: International Workshop on Statistical Atlases and Computational Models of the Heart; Springer; 2018. p. 191–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.