1,612
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES: CLINICAL ONCOLOGY

Evaluation of 18F-EF5 for detection of hypoxia in localized adenocarcinoma of the prostate

ORCID Icon, , , , , , & show all
Pages 1489-1498 | Received 28 May 2021, Accepted 20 Jul 2021, Published online: 11 Aug 2021

References

  • Vordermark D, Horsman M. Hypoxia as a biomarker and for personalized radiation oncology. Recent Results Cancer Res. 2016;198:123–142.
  • Cosse J-P, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem. 2008;8(7):790–797.
  • Saggar JK, Tannock IF. Chemotherapy rescues hypoxic tumor cells and induces their reoxygenation and Repopulation-An Effect That Is Inhibited by the Hypoxia-Activated Prodrug TH-302. Clin Cancer Res. 2015;21(9):2107–2114.
  • Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352(6282):175–180.
  • Movsas B, Chapman JD, Greenberg RE, et al. Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age. Cancer. 2000;89(9):2018–2024.
  • Höckel M, Schlenger K, Aral B, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Research. 1996;56(19):4509–4515.
  • Parker C, Milosevic M, Toi A, et al. Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2004;58(3):750–757.
  • Turaka A, Buyyounouski MK, Hanlon AL, et al. Hypoxic prostate/muscle Po2 ratio predicts for outcome in patients with localized prostate cancer: long-term results. Int J Radiat Oncol Biol Phys. 2012;82(3):e433–e439.
  • Horsman MR, Khalil AA, Nordsmark M, et al. Measurement of Po2 in a murine tumour and its correlation with hypoxic fraction. Adv Exp Med Biol. 1994;345:493–499.
  • Lopci E, Grassi I, Chiti A, et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging. 2014;4(4):365–384.
  • Hodolič M, Fettich J, Kairemo K. Hypoxia PET tracers in EBRT dose planning in head and neck cancer. Curr Radiopharm. 2015;8(1):32–37.
  • Sorger D, Patt M, Kumar P, et al. [18F]fluoroazomycinarabinofuranoside (18FAZA) and [18F] fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol. 2003;30(3):317–326.
  • Rasey JS, Koh WJ, Evans ML, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys. 1996;36(2):417–428.
  • Mainta IC, Zilli T, Tille JC, et al. The effect of neoadjuvant androgen deprivation therapy on tumor hypoxia in High-Grade prostate cancer: an 18F-MISO PET-MRI study. Int J Rad Oncol Biol Phys. 2018;102(4):1210–1218.
  • Supiot S, Rousseau C, Dore M, et al. Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using 18F-fluoromisonidazole PET/CT: a pilot study. Oncotarget. 2018;9(11):10005–10015.
  • Garcia-Parra R, Wood D, Shah RB, et al. Investigation on tumor hypoxia in resectable primary prostate cancer as demonstrated by 18F-FAZA PET/CT utilizing multimodality fusion techniques. Eur J Nucl Med Mol Imaging. 2011;38(10):1816–1823.
  • Komar G, Lehtiö K, Seppänen M, et al. Prognostic value of tumour blood flow, [18F]EF5 and [18F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy. Eur J Nucl Med Mol Imaging. 2014;41(11):2042–2050.
  • Qian Y, von Eyben R, Liu Y, et al. 18F-EF5 PET-based imageable hypoxia predicts local recurrence in tumors treated with highly conformal radiation therapy. Int J Radiat Oncol Biol Phys. 2018;102(4):1183–1192.
  • Silvoniemi A, Suilamo S, Laitinen T, et al. Repeatability of tumour hypoxia imaging using [18F]EF5 PET/CT in head and neck cancer. Eur J Nucl Med Mol Imaging. 2018;45(2):161–169.
  • Komar G, Seppänen M, Eskola O, et al. 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med. 2008;49(12):1944–1951.
  • Laasik M, Hynninen J, Forsback S, et al. The feasibility of [18F]EF5-PET/CT to image hypoxia in ovarian tumors: a clinical study. EJNMMI Res. 2020;10(1):103.
  • Yapp DTT, Woo J, Kartono A, et al. Non-invasive evaluation of tumour hypoxia in the shionogi tumour model for prostate cancer with [18F]-EF5 and positron emission tomography. BJU Int. 2007;99(5):1154–1160.
  • Skov K, Adomat H, Bowden M, et al. Hypoxia in the androgen-dependent Shionogi model for prostate cancer at three stages 1. Radiat Res. 2004;162(5):547–553.
  • Dolbier WR, Li AR, Koch CJ, et al. [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl Radiat Isot. 2001;54(1):73–80.
  • Martin Bland J, Altman DG. Statistical methods for assessing agreement between two clinical measurments. The Lancet. 1986;327(8476):307–310.
  • Hompland T, Hole KH, Kon Ragnum HB, et al. Combined MR imaging of oxygen consumption and supply reveals tumor hypoxia and aggressiveness in prostate cancer patients. Cancer Res. 2018;78(16):4774–4785.
  • Zhu Y, Denhardt DT, Cao H, et al. Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a ras-activated enhancer. Oncogene. 2005;24(43):6555–6563.
  • Christian P, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumor hypoxia, survival pathway, and therapy target. Cell Cycle. 2004;3(2):164–167.
  • Stewart GD, Gray K, Pennington CJ, et al. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with gleason score. Oncology Reports. 2008;20(6):1561–1567.
  • Rupp NJ, Schuffler PJ, Zhong Q, et al. Oxygen supply maps for hypoxic microenvironment visualization in prostate cancer. J Pathol Inform. 2016;7(1):3.
  • Carvalho KC, Isabela Cunha IW, Rafael Rocha IM, et al. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics. 2011;66(6):965–972.
  • Chandler JD, Williams ED, Slavin JL, et al. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer. 2003;97(8):2035–2042.
  • De Simone G, Supuran CT. Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta. 2010;1804(2):404–409.
  • Jans J, van Dijk JH, van Schelven S, et al. Expression and localization of hypoxia proteins in prostate cancer: prognostic implications after radical prostatectomy. Urology. 2010;75(4):786–792.
  • Vergis R, Corbishley CM, Norman AR, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localized prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. The Lancet Oncology. 2008;9(4):342–351.
  • Lin LL, Silvoniemi A, James SB, et al. Radiation dosimetry and biodistribution of the hypoxia tracer (18)F-EF5 in oncologic patients. Cancer Biother Radiopharm. 2012;27(7):412–419.
  • Chopra S, Foltz WD, Milosevic MF, et al. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol. 2009;85(9):805–813.
  • Airley R, Evans A, Mobasheri A, et al. Glucose transporter glut-1 is detectable in peri-necrotic regions in many human tumor types but not normal tissues: study using tissue microarrays. Ann Anat. 2010;192(3):133–138..
  • Reinicke K, Sotomayor P, Cisterna P, et al. Cellular distribution of glut-1 and glut-5 in benign and malignant human prostate tissue. J Cell Biochem. 2012;113(2):553–562..
  • Tilli TM, Thuler LC, Matos AR, et al. Expression analysis of osteopontin mRNA splice variants in prostate cancer and benign prostatic hyperplasia. Exp Mol Pathol. 2012;92(1):13–19.
  • Adams A, van Brussel ASA, Vermeulen JF, et al. The potential of hypoxia markers as target for breast molecular imaging - a systematic review and Meta-analysis of human marker expression. BMC Cancer. 2013;13(1):538.
  • Ilie M, Mazure NM, Hofman V, et al. High levels of carbonic anhydrase IX in tumour tissue and plasma are biomarkers of poor prognostic in patients with non-small cell lung cancer. Br J Cancer. 2010;102(11):1627–1635.
  • Said J. Biomarker discovery in urogenital cancer. Biomarkers. 2005;10(1):83–86.
  • Ambrosio MR, Di Serio C, Danza G, et al. Carbonic anhydrase IX is a marker of hypoxia and correlates with higher gleason scores and ISUP grading in prostate cancer. Diagn Pathol. 2016;11(1):45.
  • Smyth LG, O’Hurley G, O’Grady A, et al. Carbonic anhydrase IX expression in prostate cancer. Prostate Cancer Prostatic Dis. 2010;13(2):178–181.
  • Hoskin PJ, Carnell DM, Taylor NJ, et al. Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole Immunohistochemistry-Initial observations. Int J Radiat Oncol Biol Phys. 2007;68(4):1065–1071.
  • Carnell DM, Smith RE, Daley FM, et al. An immunohistochemical assessment of hypoxia in prostate carcinoma using pimonidazole: implications for radioresistance. Int J Radiat Oncol Biol Phys. 2006;65(1):91–99.
  • Vāvere AL, Lewis JS. Examining the relationship between Cu-ATSM hypoxia selectivity and fatty acid synthase expression in human prostate cancer cell lines. Nucl Med Biol. 2008;35(3):273–279.
  • Hochachka PW, Rupert JL, Goldenberg L, et al. Going malignant: the hypoxia-cancer connection in the prostate. Bioessays. 2002;24(8):749–757.