1,264
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES: SURVIVORSHIP, REHABILITATION AND PALLIATIVE CARE

Cognitive interference processing in adult survivors of childhood acute lymphoblastic leukemia using functional magnetic resonance imaging

ORCID Icon, , , , ORCID Icon, & show all
Pages 333-340 | Received 25 Apr 2021, Accepted 25 Sep 2021, Published online: 12 Oct 2021

References

  • Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2017. Bethesda: National Cancer Institute; 2020.
  • Link K, Moëll C, Österberg K, et al. Adult survivors of childhood acute lymphoblastic leukaemia with GH deficiency have normal self-rated quality of life but impaired neuropsychological performance 20 years after cranial irradiation. Clin Endocrinol. 2006;65(5):617–625.
  • Schuitema I, de Sonneville L, Kaspers G, et al. Executive dysfunction 25 years after treatment with cranial radiotherapy for pediatric lymphoid malignancies. J Int Neuropsychol Soc. 2015;21(9):657–669.
  • Halsey C, Buck G, Richards S, et al. The impact of therapy for childhood acute lymphoblastic leukaemia on intelligence quotients; results of the risk-stratified randomized Central nervous system treatment trial MRC UKALL XI. J Hematol Oncol. 2011;4(1):12.
  • Cheung YT, Krull KR. Neurocognitive outcomes in long-term survivors of childhood acute lymphoblastic leukemia treated on contemporary treatment protocols: a systematic review. Neurosci Biobehav Rev. 2015;53:108–120.
  • Edelstein K, D’Agostino N, Bernstein LJ, et al. Long-term neurocognitive outcomes in young adult survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2011;33(6):450–458.
  • Mody R, Li S, Dover DC, et al. Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study. Blood. 2008;111(12):5515–5523.
  • Kirchhoff AC, Krull KR, Ness KK, et al. Physical, mental, and neurocognitive status and employment outcomes in the childhood cancer survivor study cohort. Cancer Epidemiol Biomarkers Prev. 2011;20(9):1838–1849.
  • Kunin‐Batson A, Kadan‐Lottick N, Zhu L, et al. Predictors of independent living status in adult survivors of childhood cancer: a report from the childhood cancer survivor study. Pediatr Blood Cancer. 2011;57(7):1197–1203.
  • Reddick WE, Shan ZY, Glass JO, et al. Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer. 2006;106(4):941–949.
  • Armstrong GT, Reddick WE, Petersen RC, et al. Evaluation of memory impairment in aging adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiotherapy. J Natl Cancer Inst. 2013;105(12):899–907.
  • Schuitema I, Deprez S, Van Hecke W, et al. Accelerated aging, decreased white matter integrity, and associated neuropsychological dysfunction 25 years after pediatric lymphoid malignancies. J Clin Oncol. 2013;31(27):3378–3388.
  • Follin C, Svärd D, van Westen D, et al. Microstructural white matter alterations associated to neurocognitive deficits in childhood leukemia survivors treated with cranial radiotherapy – a diffusional kurtosis study. Acta Oncol. 2019;58(7):1021–1028.
  • Robinson KE, Livesay KL, Campbell LK, et al. Working memory in survivors of childhood acute lymphocytic leukemia: functional neuroimaging analyses. Pediatr Blood Cancer. 2010;54(4):585–590.
  • Monje M, Thomason ME, Rigolo L, et al. Functional and structural differences in the hippocampus associated with memory deficits in adult survivors of acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60(2):293–300.
  • Krull KR, Cheung YT, Liu W, et al. Chemotherapy pharmacodynamics and neuroimaging and neurocognitive outcomes in long-term survivors of childhood acute lymphoblastic leukemia. J Clin Oncol. 2016;34(22):2644–2653.
  • Fellah S, Cheung YT, Scoggins MA, et al. Brain activity associated with attention deficits following chemotherapy for childhood acute lymphoblastic leukemia. J Natl Cancer Inst. 2019;111(2):201–209.
  • Bush G, Shin LM, Holmes J, et al. The multi-source interference task: validation study with fMRI in individual subjects. Mol Psychiatry. 2003;8(1):60–70.
  • Bush G, Shin LM. The multi-source interference task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nat Protoc. 2006;1(1):308–313.
  • Gustafsson G, Kreuger A, Dohlwitz A. Acute lymphoblastic leukemia in Swedish children 1973-1978. Acta Paediatr Scand. 1981;70(5):609–614.
  • Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–156.
  • Jenkinson M, Bannister P, Brady M, et al. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–841.
  • Andersson JL, Jenkinson M, Smith S. Non-linear optimisation. FMRIB technical report TR07JA1. FMRIB Analysis Group of the University of Oxford; 2007. Available from: https://www.fmrib.ox.ac.uk/datasets/techrep/
  • Andersson JL, Jenkinson M, Smith S. Non-linear registration, aka spatial normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford; 2007. Available from: https://www.fmrib.ox.ac.uk/datasets/techrep/
  • Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–155.
  • Woolrich MW, Ripley BD, Brady M, et al. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage. 2001;14(6):1370–1386.
  • Worsley KJ. Statistical analysis of activation images. In: Jezzard P, Matthews PM, Smith SM, editors. Functional MRI: an introduction to methods. Oxford University Press; 2001. p. 251–270.
  • Beckmann CF, Jenkinson M, Smith SM. General multilevel linear modeling for group analysis in FMRI. Neuroimage. 2003;20(2):1052–1063.
  • Woolrich MW, Behrens TE, Beckmann CF, et al. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage. 2004;21(4):1732–1747.
  • Woolrich MW. Robust group analysis using outlier inference. Neuroimage. 2008;41(2):286–301.
  • Harrison BJ, Yücel M, Pujol J, et al. Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res. 2007;91(1–3):82–86.
  • Yücel M, Harrison BJ, Wood SJ, et al. Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Arch Gen Psychiatry. 2007;64(8):946–955.
  • Allen KJ, Hooley JM. Negative mood and interference control in nonsuicidal self-injury. Compr Psychiatry. 2017;73:35–42.
  • Capri T, Santoddi E, Fabio RA. Multi-source interference task paradigm to enhance automatic and controlled processes in ADHD. Res Dev Disabil. 2020;97:103542.
  • Darnell BC, Valentiner DP. Performance on the multisource interference task moderates the relationship between trauma exposure and posttraumatic stress symptoms. ClinPsycholSci. 2020;8(2):351–358.
  • Jung M, Jonides J, Berman MG, et al. Construct validity of the multi-source interference task to examine attention in heart failure. Nurs Res. 2018;67(6):465–472.
  • Hearps S, Seal M, Anderson V, et al. The relationship between cognitive and neuroimaging outcomes in children treated for acute lymphoblastic leukemia with chemotherapy only: a systematic review. Pediatr Blood Cancer. 2017;64(2):225–233.
  • Pesonen M, Hämäläinen H, Krause CM. Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain Res. 2007;1138:171–177.