232
Views
0
CrossRef citations to date
0
Altmetric
Original Articles: Clinical Oncology

Experimental validation of a novel method of dose accumulation for the rectum

ORCID Icon, & ORCID Icon
Pages 915-922 | Received 23 Mar 2023, Accepted 08 Jul 2023, Published online: 28 Jul 2023

References

  • Buettner F, Gulliford SL, Webb S, et al. Using dose-surface maps to predict radiation-induced rectal bleeding: a neural network approach. Phys Med Biol. 2009;54(17):5139–5153. doi: 10.1088/0031-9155/54/17/005.
  • Wortel RC, Witte MG, van der Heide UA, et al. Dose–surface maps identifying local dose–effects for acute gastrointestinal toxicity after radiotherapy for prostate cancer. Radiother Oncol. 2015;117(3):515–520. doi: 10.1016/j.radonc.2015.10.020.
  • Scaife JE, Thomas SJ, Harrison K, et al. Accumulated dose to the rectum, measured using dose-volume histograms and dose-surface maps, is different from planned dose in all patients treated with radiotherapy for prostate cancer. Br J Radiol. 2015;88(1054):20150243. doi: 10.1259/bjr.20150243.
  • Shelley LE, Scaife JE, Romanchikova M, et al. Delivered dose can be a better predictor of rectal toxicity than planned dose in prostate radiotherapy. Radiother Oncol. 2017;123(3):466–471. doi: 10.1016/j.radonc.2017.04.008.
  • Murray J, McQuaid D, Dunlop A, et al. SU-E-J-14: a novel approach to evaluate the dosimetric effect of rectal variation during image guided prostate radiotherapy. Med Phys. 2014;41(6Part6):157–157. doi: 10.1118/1.4888065.
  • Shelley LE, Sutcliffe MP, Thomas SJ, et al. Associations between voxel-level accumulated dose and rectal toxicity in prostate radiotherapy. Phys Imaging Radiat Oncol. 2020;14:87–94. doi: 10.1016/j.phro.2020.05.006.
  • Casares-Magaz O, B¨ulow S, Pettersson NJ, et al. High accumulated doses to the inferior rectum are associated with late gastro-intestinal toxicity in a case-control study of prostate cancer patients treated with radiotherapy. 2019;58(10):1543–1546.
  • van Herk M, Bruce A, Guus Kroes AP, et al. Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. Int J Radiat Oncol Biol Phys. 1995;33(5):1311–1320. doi: 10.1016/0360-3016(95)00116-6.
  • Crook JM, Raymond Y, Salhani D, et al. Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol. 1995;37(1):35–42. doi: 10.1016/0167-8140(95)01613-L.
  • Balter J, Sandler HM, Lam K, et al. Measurement of prostate motion over the course of radiotherapy. Int J Radiat Oncol Biol Phys. 1993;27:223. doi: 10.1016/0360-3016(93)90784-S.
  • Zelefsky MJ, Kollmeier M, Cox B, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84(1):125–129
  • Marcello M, Ebert M, Haworth A, et al. Association between treatment planning and delivery factors and disease progression in prostate cancer radiotherapy: results from the TROG 03.04 RADAR trial. Radiother Oncol. 2018;126(2):249–256. doi: 10.1016/j.radonc.2017.10.021.
  • Heemsbergen WD, Al-Mamgani A, Witte MG, et al. Radiotherapy with rectangular fields is associated with fewer clinical failures than conformal fields in the high-risk prostate cancer subgroup: results from a randomized trial. Radiother Oncol. 2013;107(2):134–139. doi: 10.1016/j.radonc.2013.03.019.
  • Wortel RC, Incrocci L, Pos FJ, et al. Acute toxicity after Image-Guided intensity modulated radiation therapy compared to 3D conformal radiation therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys. 2015;91(4):737–744. doi: 10.1016/j.ijrobp.2014.12.017.
  • van Haaren PM, Bel A, Hofman P, et al. Influence of daily setup measurements and corrections on the estimated delivered dose during IMRT treatment of prostate cancer patients. Radiother Oncol. 2009;90(3):291–298. doi: 10.1016/j.radonc.2008.12.021.
  • Thornqvist S, Petersen JB, Hoyer M, et al. Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration. Acta Oncol. 2010;49(7):1023–1032. doi: 10.3109/0284186X.2010.503662.
  • Thor M, Petersen JB, Bentzen L, et al. Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncol. 2011;50(6):918–925. doi: 10.3109/0284186X.2011.577806.
  • Gao S, Zhang L, Wang H, et al. A deformable image registration method to handle distended rectums in prostate cancer radiotherapy. Med Phys. 2006;33(9):3304–3312. doi: 10.1118/1.2222077.
  • Velec M, Moseley JL, Svensson S, et al. Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system. Med Phys. 2017;44(7):3407–3417. doi: 10.1002/mp.12307.
  • Kadoya N, Miyasaka YY, Yamamoto T, et al. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques. J Radiat Res. 2017;58(5):720–728. doi: 10.1093/jrr/rrx028.
  • Motegi K, Tachibana H, Motegi A, et al. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy. J Appl Clin Med Phys. 2019;20(1):229–236. doi: 10.1002/acm2.12515.
  • D’Aquino A. Assessment of delivered rectal dose in prostate cancer radiotherapy [dissertation]. University of London; 2021. Available from: https://repository.icr.ac.uk/handle/internal/4878
  • Yeo UJ, Taylor ML, Supple JR, et al. Is it sensible to “deform” dose 3D experimental validation of dose-warping. Med Phys. 2012;39(8):5065–5072. doi: 10.1118/1.4736534.
  • De Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(4):965–973.
  • Barbosa Neto O, Souhami L, Faria S. Hypofractionated radiation therapy for prostate cancer: the McGill university health center experience. Cancer Radiother. 2015;19(6–7):431–436. doi: 10.1016/j.canrad.2015.05.015.
  • Agazaryan N, Solberg TD, DeMarco JJ. Patient specific quality assurance for the delivery of intensity modulated radiotherapy. J Appl Clin Med Phys. 2003;4(1):40–50. doi: 10.1120/jacmp.v4i1.2540.
  • Aldelaijan S, Devic S, Mohammed H, et al. Evaluation of EBT-2 model GAFCHROMIC™ film performance in water. Med Phys. 2010;37(7):3687–3693. doi: 10.1118/1.3455713.
  • Lewis D, Micke A, Yu X, et al. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys. 2012;39(10):6339–6350. doi: 10.1118/1.4754797.
  • Patrick HM, Kildea J. Technical note: rtdsm-An open-source software for radiotherapy dose-surface map generation and analysis. Med Phys. 2022;49(11):7327–7335. doi: 10.1002/mp.15900.
  • Low DA, Harms WB, Mutic S, et al. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656–661. doi: 10.1118/1.598248.
  • Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group no. 218. Med Phys. 2018;45(4):e53–e83. doi: 10.1002/mp.12810.
  • Jaffray DA, Lindsay PE, Brock KK, et al. Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int J Radiat Oncol Biol Phys. 2010;76(3 SUPPL):S135–S9. doi: 10.1016/j.ijrobp.2009.06.093.
  • Acosta O, Drean G, Ospina JD, et al. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy. Phys Med Biol. 2013;58(8):2581–2595. doi: 10.1088/0031-9155/58/8/2581.
  • Palorini F, Cozzarini C, Gianolini S, et al. First application of a pixel-wise analysis on bladder dose-surface maps in prostate cancer radiotherapy. Radiother Oncol. 2016;119(1):123–128. doi: 10.1016/j.radonc.2016.02.025.
  • Hoffmans D, Niebuhr N, Bohoudi O, et al. An end-to-end test for MR-guided online adaptive radiotherapy. Phys Med Biol. 2020;65(12):125012. doi: 10.1088/1361-6560/ab8955.
  • Bohoudi O, Lagerwaard FJ, Bruynzeel AM, et al. End-to-end empirical validation of dose accumulation in MRI-guided adaptive radiotherapy for prostate cancer using an anthropomorphic deformable pelvis phantom. Radiother Oncol. 2019;141:200–207. doi: 10.1016/j.radonc.2019.09.014.
  • Elter A, Dorsch S, Mann P, et al. End-to-end test of an online adaptive treatment procedure in MR-guided radiotherapy using a phantom with anthropomorphic structures. Phys Med Biol. 2019;64(22):225003. doi: 10.1088/1361-6560/ab4d8e.
  • Marot M, Elter A, Mann P, et al. Technical note: on the feasibility of performing dosimetry in target and organ at risk using polymer dosimetry gel and thermoluminescence detectors in an anthropomorphic, deformable, and multimodal pelvis phantom. Med Phys. 2021;48(9):5501–5510. doi: 10.1002/mp.15096.
  • Vanneste BG, Buettner F, Pinkawa M, et al. Ano-rectal wall dose-surface maps localize the dosimetric benefit of hydrogel rectum spacers in prostate cancer radiotherapy. Clin Transl Radiat Oncol. 2019;14:17–24. doi: 10.1016/j.ctro.2018.10.006.
  • Moulton CR, House MJ, Lye V, et al. Spatial features of dose-surface maps from deformably registered plans correlate with late gastrointestinal complications. Phys Med Biol. 2017;62(10):4118–4139. doi: 10.1088/1361-6560/aa663d.
  • Casares-Magaz O, Muren LP, Moiseenko V, et al. Spatial rectal dose/volume metrics predict patient-reported gastro-intestinal symptoms after radiotherapy for prostate cancer. Acta Oncol. 2017;56(11):1507–1513. doi: 10.1080/0284186X.2017.1370130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.