1,125
Views
0
CrossRef citations to date
0
Altmetric
Original Articles: Clinical Oncology

Script-based automatic radiotherapy planning for cervical cancer

, , , , , , , & show all
Pages 1798-1807 | Received 31 May 2023, Accepted 01 Oct 2023, Published online: 25 Oct 2023

References

  • Yusufaly TI, Meyers SM, Mell LK, et al. Knowledge-based planning for intact cervical cancer. In: Seminars in radiation oncology. Vol. 30; Elsevier; 2020. p. 328–339. doi: 10.1016/j.semradonc.2020.05.009.
  • Jensen NBK, Pötter R, Kirchheiner K, et al. Bowel morbidity following radiochemotherapy and image-guided adaptive brachytherapy for cervical cancer: physician-and patient reported outcome from the EMBRACE study. Radiother Oncol. 2018;127(3):431–439. doi: 10.1016/j.radonc.2018.05.016.
  • Spampinato S, Fokdal LU, Pötter R, et al. Risk factors and dose-effects for bladder fistula, bleeding, and cystitis after radiotherapy with imaged-guided adaptive brachytherapy for cervical cancer: an EMBRACE analysis. Radiother Oncol. 2021;158:312–320. doi: 10.1016/j.radonc.2021.01.019.
  • Westerveld H, Kirchheiner K, Nout RA, et al. Dose-effect relationship between vaginal dose points and vaginal stenosis in cervical cancer: an EMBRACE-I sub-study. Radiother Oncol. 2022;168:8–15. doi: 10.1016/j.radonc.2021.12.034.
  • Berger T, Seppenwoolde Y, Pötter R, et al. Importance of technique, target selection, contouring, dose prescription, and dose-planning in external beam radiation therapy for cervical cancer: evolution of practice from EMBRACE-I to II. Int J Radiat Oncol Biol Phys. 2019;104(4):885–894. doi: 10.1016/j.ijrobp.2019.03.020.
  • Gandhi AK, Sharma DN, Rath GK, et al. Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study. Int J Radiat Oncol Biol Phys. 2013;87(3):542–548. doi: 10.1016/j.ijrobp.2013.06.2059.
  • Klopp A, Yeung A, Deshmukh S, et al. A phase III randomized trial comparing patient-reported toxicity and quality of life (QOL) during pelvic intensity modulated radiation therapy as compared to conventional radiation therapy. Int J Radiat Oncol Biol Phys. 2016;96(2):S3. doi: 10.1016/j.ijrobp.2016.06.024.
  • Ray A, Sarkar B. Small bowel toxicity in pelvic radiotherapy for postoperative gynecological cancer: comparison between conformal radiotherapy and intensity modulated radiotherapy. Asia Pac J Clin Oncol. 2013;9(3):280–284. doi: 10.1111/ajco.12049.
  • Shepherd M, Bromley R, Stevens M, et al. Developing knowledge-based planning for gynecological and rectal cancers: clinical validation of RapidPlan™. J Med Radiat Sci. 2020;67(3):217–224. doi: 10.1002/jmrs.396.
  • Wang H, Wang R, Liu J, et al. Tree-based exploration of the optimization objectives for automatic cervical cancer IMRT treatment planning. Br J Radiol. 2021;94(1123):20210214. doi: 10.1259/bjr.20210214.
  • Jihong C, Penggang B, Xiuchun Z, et al. Automated intensity modulated radiation therapy treatment planning for cervical cancer based on convolution neural network. Technol Cancer Res Treat. 2020;19:1533033820957002. doi: 10.1177/1533033820957002.
  • Hansen CR, Bertelsen A, Hazell I, et al. Automatic treatment planning improves the clinical quality of head and neck cancer treatment plans. Clin Transl Radiat Oncol. 2016;1:2–8. doi: 10.1016/j.ctro.2016.08.001.
  • Hussein M, South CP, Barry MA, et al. Clinical validation and benchmarking of knowledge-based IMRT and VMAT treatment planning in pelvic anatomy. Radiother Oncol. 2016;120(3):473–479. doi: 10.1016/j.radonc.2016.06.022.
  • Sharfo AWM, Breedveld S, Voet PW, et al. Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy. PLOS One. 2016;11(12):e0169202. doi: 10.1371/journal.pone.0169202.
  • Hazell I, Bzdusek K, Kumar P, et al. Automatic planning of head and neck treatment plans. J Appl Clin Med Phys. 2016;17(1):272–282. doi: 10.1120/jacmp.v17i1.5901.
  • Gallio E, Giglioli FR, Girardi A, et al. Evaluation of a commercial automatic treatment planning system for liver stereotactic body radiation therapy treatments. Phys Med. 2018;46:153–159. doi: 10.1016/j.ejmp.2018.01.016.
  • Breedveld S, Storchi PR, Voet PW, et al. iCycle: integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys. 2012;39(2):951–963. doi: 10.1118/1.3676689.
  • Boylan C, Rowbottom C. A bias-free, automated planning tool for technique comparison in radiotherapy-application to nasopharyngeal carcinoma treatments. J Appl Clin Med Phys. 2014;15(1):4530–4225. doi: 10.1120/jacmp.v15i1.4530.
  • Xhaferllari I, Wong E, Bzdusek K, et al. Automated IMRT planning with regional optimization using planning scripts. J Appl Clin Med Phys. 2013;14(1):4052–4191. doi: 10.1120/jacmp.v14i1.4052.
  • Rigaud B, Anderson BM, Zhiqian HY, et al. Automatic segmentation using deep learning to enable online dose optimization during adaptive radiation therapy of cervical cancer. Int J Radiat Oncol Biol Phys. 2021;109(4):1096–1110. doi: 10.1016/j.ijrobp.2020.10.038.
  • McIntosh C, Welch M, McNiven A, et al. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method. Phys Med Biol. 2017;62(15):5926–5944. doi: 10.1088/1361-6560/aa71f8.
  • Ayala R, Ruiz G, Valdivielso T. Automatizing a nonscripting TPS for optimizing clinical workflow and reoptimizing IMRT/VMAT plans. Med Dosim. 2019;44(4):409–414. doi: 10.1016/j.meddos.2019.02.006.
  • Rhee DJ, Jhingran A, Kisling K, et al. Automated radiation treatment planning for cervical cancer. In: seminars in radiation oncology. Vol. 30; Elsevier; 2020. p. 340–347. doi: 10.1016/j.semradonc.2020.05.006.
  • Fogliata A, Belosi F, Clivio A, et al. On the pre-clinical validation of a commercial model-based optimisation engine: application to volumetric modulated arc therapy for patients with lung or prostate cancer. Radiother Oncol. 2014;113(3):385–391. doi: 10.1016/j.radonc.2014.11.009.
  • Bai P, Weng X, Quan K, et al. A knowledge-based intensity-modulated radiation therapy treatment planning technique for locally advanced nasopharyngeal carcinoma radiotherapy. Radiat Oncol. 2020;15(1):1–10. doi: 10.1186/s13014-020-01626-z.
  • Ling C, Han X, Zhai P, et al. A hybrid automated treatment planning solution for esophageal cancer. Radiat Oncol. 2019;14(1):1–7. doi: 10.1186/s13014-019-1443-5.
  • Lou Z, Cheng C, Mao R, et al. A novel automated planning approach for multi-anatomical sites cancer in raystation treatment planning system. Phys Med. 2023;109:102586. doi: 10.1016/j.ejmp.2023.102586.
  • Ma C, Huang F. Assessment of a knowledge-based RapidPlan model for patients with postoperative cervical cancer. Prec. Radiat. Oncol. 2017;1(3):102–107. doi: 10.1002/pro6.23.
  • Zhang D, Yuan Z, Hu P, et al. Automatic treatment planning for cervical cancer radiation therapy using direct three-dimensional patient anatomy match. J Appl Clin Med Phys. 2022;23(8):e13649. doi: 10.1002/acm2.13649.
  • Bijman R, Sharfo AW, Rossi L, et al. Pre-clinical validation of a novel system for fully-automated treatment planning. Radiother Oncol. 2021;158:253–261. doi: 10.1016/j.radonc.2021.03.003.
  • Trivellato S, Caricato P, Pellegrini R, et al. Comprehensive dosimetric and clinical evaluation of lexicographic optimization-based planning for cervical cancer. Front Oncol. 2022;12:1041839. doi: 10.3389/fonc.2022.1041839.
  • Norwegian Directorate of Health. Nasjonalt handlingsprogram med retningslinjer for diagnostikk, behandling og oppfølging av gynekologisk kreft [nettdokument], faglig oppdatert 11. 2023, https://www.helsedirektoratet.no/retningslinjer/gynekologisk-kreft-handlingsprogram.]; 2016.
  • Tanderup K, Pötter R, Lindegaard J, et al. EMBRACE II study protocol v.1.0, Image guided intensity modulated External beam radiochemotherapy and MRI based adaptive BRAchytherapy in locally advanced CErvical cancer EMBRACE-II (retrieved 28.04.2023) [https://www.embracestudy.dk/UserUpload/PublicDocuments/EMBRACE\%20II\%20Protocol.pdf]; 2015.
  • Pötter R, Tanderup K, Kirisits C, et al. The EMBRACE II study: the outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018;9:48–60. doi: 10.1016/j.ctro.2018.01.001.
  • Ogrinc G, Davies L, Goodman D, et al. Squire 2.0 (standards for quality improvement reporting excellence): revised publication guidelines from a detailed consensus process [https://www.equator-network.org/reporting-guidelines/squire/.]; 2015.
  • Dawson LA, Kavanagh BD, Paulino AC, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–S115. doi: 10.1016/j.ijrobp.2009.02.089.
  • Wortel G, Eekhout D, Lamers E, et al. Characterization of automatic treatment planning approaches in radiotherapy. Phys Imaging Radiat Oncol. 2021;19:60–65. doi: 10.1016/j.phro.2021.07.003.
  • Frengen J, Vikström J, Mjaaland I, et al. Locoregional breast radiotherapy including IMN: optimizing the dose distribution using an automated non-coplanar VMAT-technique. Acta Oncol. 2023. doi: 10.1080/0284186X.2023.2264488.