495
Views
7
CrossRef citations to date
0
Altmetric
Articles

Young children’s emergent science competencies in everyday family contexts: a case study

ORCID Icon &
Pages 1351-1368 | Received 14 Aug 2017, Accepted 11 Sep 2017, Published online: 30 Sep 2017

References

  • Akerson, V. L., & Abd-El-Khalick, F. S. (2005). How should I know what scientists do – I am just a kid: Fourth grade students’ conceptions of nature of science. Journal of Elementary Science Education, 17, 1–11. doi: 10.1007/BF03174669
  • Ansbacher, T. (1999). Experience, inquiry, and meaning making. Exhibitionist, 28(2), 22–26.
  • Bell, P., Bricker, L. A., Lee, T. R., Reeve, S., & Zimmerman, H. T. (2006). Understanding the cultural foundations of children’s biological knowledge: Insights from everyday cognition research. Paper presented at the Seventh International Conference of the Learning Sciences (ICLS), Mahwah, NJ: LEA.
  • Bell, P., Lewenstein, B., Shouse, A. W., & Feder, M. A. (Eds.). (2009). Learning science in informal environments: People, places, and pursuits. Washington, DC: National Academies Press.
  • Braund, M., & Reiss, M. (2007). Towards a more authentic science curriculum: The contribution of out-of-school learning. International Journal of Science Education, 28(12), 1373–1388. doi: 10.1080/09500690500498419
  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18, 32–42. doi: 10.3102/0013189X018001032
  • Callanan, M. A., & Jipson, J. L. (2001). Explanatory conversation and young children’s developing scientific literacy. In K. Crowley, C. D. Schumm, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 21–49). Mahwah, NJ: Erlbaum.
  • Callanan, M., Luce, M., Triona, L., Rigney, J., Siegel, D., & Jipson, J. (2013). What counts as science in everyday and family interactions? In B. Bevan, P. Bell, R. Stevens, & A. Razfar (Eds.), LOST: Learning about out-of-school-time (pp. 29–48). Netherlands: Springer.
  • Callanan, M. A., & Oakes, L. A. (1992). Preschoolers’ questions and parents’ explanations: Causal thinking in everyday activity . Cognitive Development, 7, 213–233. doi: 10.1016/0885-2014(92)90012-G
  • Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
  • Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13–19. doi: 10.1016/S0193-3973(99)00046-5
  • Carey, S., & Gelman, R. (1991). The epigenesis of mind: Essays on biology and cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Case, R., & Griffin, S. (1990). Child cognitive development: The role of central conceptual structures in the development of scientific and social thought. In C. A. Hauert (Ed.), Developmental psychology: Cognitive, perceptual-motor, and neuropsychological perspectives (pp. 193–230). Amsterdam: Elsevier.
  • Cole, M., & Wertsch, J. V. (1996). Beyond the individual-social antimony in discussions of Piaget and Vygotsky. Human Development, 39, 250–256. doi: 10.1159/000278475
  • Crowley, K., Callanan, M. A., Jipson, J. L., Galco, J., Topping, K., & Shrager, J. (2001). Shared scientific thinking in everyday parent-child activity. Science Education, 85(6), 712–732. doi: 10.1002/sce.1035
  • Crowley, K., & Galco, J. (2001). Everyday activity and the development of scientific thinking. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 123–156). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Crowley, K., & Jacobs, M. (2002). Building islands of expertise in everyday family activity. In G. Leinhardt, K. Crowley, & K. Knutson (Eds.), Learning conversations in museums (pp. 333–356). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Duschl, R. A. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. doi: 10.3102/0091732X07309371
  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.
  • Erickson, F., & Gutierrez, K. (2002). Comment: Culture, rigor, and science in educational research. Educational Researcher, 31(8), 21–24. doi: 10.3102/0013189X031008021
  • Evans, E. M. (2001). Cognitive and contextual factors in the emergence of diverse belief systems: Creation versus evolution. Cognitive Psychology, 42(3), 217–266. doi: 10.1006/cogp.2001.0749
  • Falk, J. H. (2001). Free-choice science learning: Framing the discussion. In J. H. Falk (Ed.), Free-choice science education: How we learn science outside of school (pp. 3–20). New York, NY: Teachers College Press.
  • Gelman, R., & Brenneman, K. (2012). Moving young ‘scientists-in-waiting’ onto science learning pathways. Focus on observation. In S. Carver & J. Shrager (Eds.), The journey from child to scientist: Integrating cognitive development and the education sciences (pp. 155–169). Washington, DC: American Psychological Association Press.
  • Gerber, L., Cavallo, A. M. L., & Marek, E. A. (2001). Relationships among informal learning environments, teaching procedures and scientific reasoning ability. International Journal of Science Education, 23(5), 535–549. doi: 10.1080/09500690116971
  • Gilbert, G. N., & Mulkay, M. (1984). Opening Pandora’s box. Cambridge: Cambridge University Press.
  • Gonzalez, N., Moll, L. C., & Amanti, C. (2005). Theorizing education practice: Funds of knowledge in households. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Goodwin, M. H. (2007). Occasioned knowledge exploration in family interaction. Discourse in Society, 18(93), 93–110. doi: 10.1177/0957926507069459
  • Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 69–190). Mahwah, NJ: Erlbaum.
  • Hammer, D., & Elby, A. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students’ epistemologies. Epistemological Resources and Framing, 4(1), 1–32.
  • Herrmann, P. A., French, J. A., DeHart, G. B., & Rosengren, K. S. (2013). Essentialist reasoning and knowledge effects on biological reasoning in young children. Merrill-Palmer Quarterly, 59(2), 198–220. doi: 10.1353/mpq.2013.0008
  • Inagaki, K., & Hatano, G. (2002). Young children’s naive thinking about the biological world. New York, NY: Psychology Press.
  • Inhelder, B., & Piaget, J. (1955/1958). The growth of logical thinking from childhood to adolescence. (A. Parsons & S. Milgram, Trans.). New York, NY: Basic Books.
  • Johnson, K. E., Alexander, J. M., Spencer, S., Leibham, M. L., & Neitzel, C. (2004). Factors associated with the early emergence of intense interests within conceptual domains. Cognitive Development, 19, 325–343. doi: 10.1016/j.cogdev.2004.03.001
  • Kuhn, D. (2010). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Handbook of childhood cognitive development (2nd ed., pp. 497–523). Oxford: Wiley Blackwell.
  • Lave, J. (1982). A comparative approach to educational forms and learning processes. Anthropology & Education Quarterly, 13(2), 181–187. doi: 10.1525/aeq.1982.13.2.05x1832l
  • Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In W. Damon, R. Lerner, K. Ann Renninger, & I. E. Sigel (Eds.), Handbook of child psychology: Child psychology in practice (6th ed., Vol. 4, pp. 153–196). Hoboken, NJ: Wiley.
  • Lemke, J. L. (1990). Talking science: Language, learning, and values. Norwood, NJ: Ablex.
  • Litowitz, B. (1993). Deconstruction in the zone of proximal development. In E. Forman, N. Minick, & C. A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children’s development. (pp. 184–196). New York, NJ: Oxford University Press.
  • Lloyd, E., Edmonds, C., Downs, C., Crutchley, R., & Paffard, F. (2017). Talking everyday science to very young children: A study involving parents and practitioners within an early childhood centre. Early Child Development and Care, 187(2), 244–260. doi: 10.1080/03004430.2016.1226355
  • McDermott, R., & Webber, V. (1998). When is math or science? In S. V. Goldman, & J. G. Greeno (Eds.), Thinking practices in mathematics and science learning (pp. 321–339). Mahwah, NJ: Lawrence Erlbaum Associates.
  • McNerney, K., & Hall, N. (2017). Developing a framework of scientific enquiry in early childhood: An action research project to support staff development and improve science teaching. Early Child Development and Care, 187(2), 206–220. doi: 10.1080/03004430.2016.1237564
  • Mercer, N. (2002). Developing dialogues. In G. Wells, & G. Claxton (Eds.), Learning for life in the 21st century (pp. 141–153). Oxford: Blackwell.
  • Mercer, N., & Howe, C. (2012). Explaining the dialogic processes of teaching and learning: The value and potential of sociocultural theory. Learning, Culture and Social Interaction, 1, 12–21. doi: 10.1016/j.lcsi.2012.03.001
  • Metz, K. E. (1995). Reassessment of developmental constraints on children’s science instruction. Review of Educational Research, 65(2), 93–127. doi: 10.3102/00346543065002093
  • Moll, L. C., Amanti, C., Neff, D., & González, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory Into Practice, 31(2), 132–141. doi: 10.1080/00405849209543534
  • Nasir, N., Rosebery, A., Warren, B., & Lee, C. (2006). Learning as cultural process: Achieving equity through diversity. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 686–706). New York, NY: Cambridge University Press.
  • National Association for the Education of Young Children (NAEYC). (2013). All criteria document (pp. 17–18). Retrieved from www.naeyc.org/files/academy/file/AllCriteriaDocument.pdf
  • National Research Council (U.S.). Committee on a Conceptual Framework for New K-12 Science Education Standards. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • Newman, F., & Holzman, L. (1993). Lev Vygotsky: Revolutionary scientist. London: Routledge.
  • Ochs, E., & Taylor, C. (1992). Science at dinner. In C. Kramsch, & S. McConnell-Ginet (Eds.), Text and context: Cross-disciplinary perspectives on language study (pp. 29–45). Lexington, MA: DC Heath.
  • Ochs, E., Taylor, C., Rudolph, D., & Smith, R. (1992). Storytelling as a theory-building activity. Discourse Processes, 15, 37–72. doi: 10.1080/01638539209544801
  • Palys, T. (2008). Purposive sampling. In L. M. Given (Ed.), The Sage encyclopedia of qualitative research methods (Vol. 2, pp. 697–698). Los Angeles, CA: Sage.
  • Piaget, J. (1951). Egocentric thought and sociocentric thought. In J. Piaget (Ed.), Sociological Studies (pp. 270–286). London: Routledge.
  • Porter, J. W. (2008). What makes science, science? American Scientist, 96(3), 178. doi: 10.1511/2008.71.178
  • Rounds, J. (1999). Meaning-making: A new paradigm for museum exhibits? Exhibitionist, 18(2), 5–8.
  • Russell, T., & McGuigan, L. (2017). An updated perspective on emergent science. Early Child Development and Care, 187(2), 284–297. doi: 10.1080/03004430.2016.1236847
  • Saldana, J. (2013). The coding manual for qualitative researchers (2nd ed.). Los Angeles, CA: Sage.
  • Salehjee, S., & Watts, D. M. (2015). Science lives: School choices and ‘natural tendencies’. International Journal of Science Education, 37(4), 727–743. doi: 10.1080/09500693.2015.1013075
  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656. doi: 10.1002/sce.20065
  • Silby, A., & Watts, M. (2017). Early years science education: A contemporary look. Early Child Development and Care, 187(2), 179–180. doi: 10.1080/03004430.2016.1237567
  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3, 115–163. doi: 10.1207/s15327809jls0302_1
  • Stake, R. (1995). The art of case study research. Thousand Oaks, CA: Sage.
  • Strauss, A., & Corbin, J. (1994). Grounded theory methodology. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 217–285). Thousand Oaks, CA: Sage.
  • Vygotsky, L. (1978). Mind in society: The role of play in development. Cambridge, MA: Harvard University Press.
  • Wellman, H. M., & Gelman, S. A. (1998). Knowledge acquisition in foundational domains. In D. Kuhn & R. S. Siegler (Eds.), Handbook of child psychology: Cognition, perception and language (pp. 523–573). New York, NY: Wiley.
  • Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–100. doi: 10.1111/j.1469-7610.1976.tb00381.x
  • Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage.
  • Zimmerman, H. T. (2012). Participating in science at home: Recognition work and learning in biology. Journal of Research in Science Teaching, 49(5), 597–630. doi: 10.1002/tea.21014
  • Zimmerman, H. T., & Bell, P. (2012). Where young people see science: Everyday activities connected to science. International Journal of Science Education, Part B, 4(1), 25–53. doi: 10.1080/21548455.2012.741271
  • Zimmerman, H.T, Reeve, S, & Bell, P. (2009). Family sense-making practices in science center conversation. Science Education, 94(3), 478–505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.