764
Views
6
CrossRef citations to date
0
Altmetric
The Era of Infectious & Respiratory Disease

Rapid improvement in severe long COVID following perispinal etanercept

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2013-2020 | Received 28 May 2022, Accepted 28 Jun 2022, Published online: 10 Jul 2022

References

  • Soriano JB, Murthy S, Marshall JC, WHO Clinical Case Definition Working Group on Post-COVID-19 Condition, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107.
  • Group P-CC Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study. Lancet Respir Med. 2022. DOI:10.1016/S2213-2600(22)00127-8
  • Schwabenland M, Salie H, Tanevski J, et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity. 2021;54(7):1594–1610 e11.
  • García-Grimshaw M, Sankowski R, Valdés-Ferrer SI. Neurocognitive and psychiatric post-coronavirus disease 2019 conditions: pathogenic insights of brain dysfunction following severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Neurol. 2022;35(3):375–383.
  • Ignatowski TA, Noble BK, Wright JR, et al. TNFalpha: a neuromodulator in the central nervous system. Adv Exp Med Biol. 1996;402:219–224.
  • Benameur K, Agarwal A, Auld SC, et al. Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerg Infect Dis. 2020;26(9):2016–2021.
  • Heir R, Stellwagen D. TNF-Mediated homeostatic synaptic plasticity: from in vitro to in vivo models. Front Cell Neurosci. 2020;14:565841.
  • Pilotto A, Odolini S, Masciocchi S, et al. Steroid-responsive encephalitis in coronavirus disease 2019. Ann Neurol. 2020;88(2):423–427.
  • Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with covid-19. N Engl J Med. 2021;384(5):481–483.
  • Kuno R, Wang J, Kawanokuchi J, et al. Autocrine activation of microglia by tumor necrosis factor-alpha. J Neuroimmunol. 2005;162(1–2):89–96.
  • Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375(6578):267–269.
  • Frankola KA, Greig NH, Luo W, et al. Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2011;10(3):391–403.
  • Clark IA. Chronic cerebral aspects of long COVID, post-stroke syndromes and similar states share their pathogenesis and perispinal etanercept treatment logic. Pharmacol Res Perspect. 2022;10(2):e00926.
  • Marchand F, Tsantoulas C, Singh D, et al. Effects of etanercept and minocycline in a rat model of spinal cord injury. Eur J Pain. 2009;13(7):673–681.
  • Aden U, Favrais G, Plaisant F, et al. Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFalpha pathway and protection by etanercept. Brain Behav Immun. 2010;24(5):747–758.
  • Chio CC, Lin JW, Chang MW, et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem. 2010;115(4):921–929.
  • Shen CH, Tsai RY, Shih MS, et al. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg. 2011;112(2):454–459.
  • Chastre A, Belanger M, Beauchesne E, et al. Inflammatory Cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications. PLOS One. 2012;7(11):e49670.
  • Roh M, Zhang Y, Murakami Y, et al. Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLOS One. 2012;7(7):e40065.
  • Chio CC, Chang CH, Wang CC, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-alpha. BMC Neurosci. 2013;14:33.
  • Shi X, Zhou W, Huang H, et al. Inhibition of the inflammatory cytokine tumor necrosis factor-alpha with etanercept provides protection against lethal H1N1 influenza infection in mice. Crit Care. 2013;17(6):R301.
  • Ye J, Jiang R, Cui M, et al. Etanercept reduces neuroinflammation and lethality in mouse model of Japanese encephalitis. J Infect Dis. 2014;210(6):875–889.
  • Camara ML, Corrigan F, Jaehne EJ, et al. Effects of centrally administered etanercept on behavior, microglia, and astrocytes in mice following a peripheral immune challenge. Neuropsychopharmacol. 2015;40(2):502–512.
  • Bae HW, Lee N, Seong GJ, et al. Protective effect of etanercept, an inhibitor of tumor necrosis factor-alpha, in a rat model of retinal ischemia. BMC Ophthalmol. 2016;16:75.
  • Al Salihi MO, Kobayashi M, Tamari K, et al. Tumor necrosis factor-alpha antagonist suppresses local inflammatory reaction and facilitates olfactory nerve recovery following injury. Auris Nasus Larynx. 2017;44(1):70–78.
  • Hasturk AE, Gokce EC, Yilmaz ER, et al. Therapeutic evaluation of tumor necrosis factor-alpha antagonist etanercept against traumatic brain injury in rats: ultrastructural, pathological, and biochemical analyses. Asian J Neurosurg. 2018;13(4):1018–1025.
  • Pinto A, Berdasco C, Arenas-Mosquera D, et al. Anti-inflammatory agents reduce microglial response, demyelinating process and neuronal toxin uptake in a model of encephalopathy produced by Shiga toxin 2. Int J Med Microbiol. 2018;308(8):1036–1042.
  • Li Y, Fan H, Ni M, et al. Etanercept reduces neuron injury and neuroinflammation via inactivating c-Jun N-terminal kinase and nuclear factor-kappaB pathways in Alzheimer's disease: an in vitro and in vivo investigation. Neuroscience. 2022;484:140–150.
  • Tobinick E. Perispinal etanercept advances as a neurotherapeutic. Expert Rev Neurother. 2018;18(6):453–455.
  • Tobinick E, Vega CP. The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed. 2006;8(1):53.
  • Tobinick EL. Perispinal delivery of CNS drugs. CNS Drugs. 2016;30(6):469–480.
  • Tobinick E. Rapid improvement of chronic stroke deficits after perispinal etanercept: three consecutive cases. CNS Drugs. 2011;25(2):145–155.
  • Tobinick E, Kim NM, Reyzin G, et al. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs. 2012;26(12):1051–1070.
  • Shi K, Tian DC, Li ZG, et al. Global brain inflammation in stroke. Lancet Neurol. 2019;18(11):1058–1066.
  • Ralph SJ, Weissenberger A, Bonev V, et al. Phase I/II parallel double-blind randomized controlled clinical trial of perispinal etanercept for chronic stroke: improved mobility and pain alleviation. Expert Opin Investig Drugs. 2020;29(3):311–326.
  • Tobinick E. Immediate resolution of hemispatial neglect and central post-stroke pain after perispinal etanercept: case report. Clin Drug Investig. 2020;40(1):93–97.
  • Schaechter JD, Hightower BG, Kim M, et al. A pilot [(11)C]PBR28 PET/MRI study of neuroinflammation and neurodegeneration in chronic stroke patients. Brain Behav Immun Health. 2021;17:100336.
  • Tobinick E. TNF-alpha inhibition for potential therapeutic modulation of SARS coronavirus infection. Curr Med Res Opin. 2004;20(1):39–40.
  • Feldmann M, Maini RN, Woody JN, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020;395(10234):1407–1409.
  • Robinson PC, Richards D, Tanner HL, et al. Accumulating evidence suggests anti-TNF therapy needs to be given trial priority in COVID-19 treatment. Lancet Rheumatol. 2020;2(11):e653–e655.
  • Bohannon RW. Minimal clinically important difference for grip strength: a systematic review. J Phys Ther Sci. 2019;31(1):75–78.
  • Hiroe T, Kojima M, Yamamoto I, et al. Gradations of clinical severity and sensitivity to change assessed with the beck depression Inventory-II in Japanese patients with depression. Psychiatry Res. 2005;135(3):229–235.
  • de Kleijn WP, De Vries J, Wijnen PA, et al. Minimal (clinically) important differences for the fatigue assessment scale in sarcoidosis. Respir Med. 2011;105(9):1388–1395.
  • Blum D, Meador K, Biton V, et al. Cognitive effects of lamotrigine compared with topiramate in patients with epilepsy. Neurology. 2006;67(3):400–406.
  • Wu CY, Hung SJ, Lin KC, et al. Responsiveness, minimal clinically important difference, and validity of the MoCA in stroke rehabilitation. Occup Ther Int. 2019;2019:2517658.
  • Burback D, Molnar FJ, St John P, et al. Key methodological features of randomized controlled trials of Alzheimer's disease therapy. Minimal clinically important difference, sample size and trial duration. Dement Geriatr Cogn Disord. 1999;10(6):534–540.
  • Meretta BM, Whitney SL, Marchetti GF, et al. The five times sit to stand test: responsiveness to change and concurrent validity in adults undergoing vestibular rehabilitation. VES. 2007;16(4–5):233–243.
  • Nasreddine ZS, Phillips NA, Bedirian V, et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699.
  • Aiello EN, Fiabane E, Manera MR, et al. Screening for cognitive sequelae of SARS-CoV-2 infection: a comparison between the Mini-Mental state examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Neurol Sci. 2022;43(1):81–84.
  • McCrea M, Guskiewicz K, Doncevic S, et al. Day of injury cognitive performance on the military acute concussion evaluation (MACE) by U.S. military service members in OEF/OIF. Mil Med. 2014;179(9):990–997.
  • Fawns-Ritchie C, Deary IJ. Reliability and validity of the UK biobank cognitive tests. PLOS One. 2020;15(4):e0231627.
  • Henry JD, Crawford JR. A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology. 2004;18(2):284–295.
  • Hendriks C, Drent M, Elfferich M, et al. The fatigue assessment scale: quality and availability in sarcoidosis and other diseases. Curr Opin Pulm Med. 2018;24(5):495–503.
  • Master H, Coleman G, Dobson F, et al. A narrative review on measurement properties of fixed-distance walk tests up to 40 meters for adults with knee osteoarthritis. J Rheumatol. 2021;48(5):638–647.
  • Gagnon C, Mathieu J, Desrosiers J. Standardized finger-nose test validity for coordination assessment in an ataxic disorder. Can j Neurol Sci. 2004;31(4):484–489.
  • Tobinick EL. Targeted etanercept for treatment-refractory pain due to bone metastasis: two case reports. Clin Ther. 2003;25(8):2279–2288.
  • Tobinick EL. Targeted etanercept for discogenic neck pain: uncontrolled, open-label results in two adults. Clin Ther. 2003;25(4):1211–1218.
  • Tobinick EL, Britschgi-Davoodifar S. Perispinal TNF-alpha inhibition for discogenic pain. Swiss Med Wkly. 2003;133(11–12):170–177.
  • Tobinick E, Davoodifar S. Efficacy of etanercept delivered by perispinal administration for chronic back and/or neck disc-related pain: a study of clinical observations in 143 patients. Curr Med Res Opin. 2004;20(7):1075–1085.
  • Tobinick E, Gross H, Weinberger A, et al. TNF-alpha modulation for treatment of Alzheimer's disease: a 6-month pilot study. MedGenMed. 2006;8(2):25.
  • Tobinick E. Perispinal etanercept for treatment of Alzheimer's disease. Curr Alzheimer Res. 2007;4(5):550–552.
  • Tobinick EL, Gross H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer's disease. BMC Neurol. 2008;8(1):27.
  • Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer's disease following perispinal etanercept administration. J Neuroinflammation. 2008;5:2.
  • Tobinick E. Deciphering the physiology underlying the rapid clinical effects of perispinal etanercept in alzheimer's disease. Curr Alzheimer Res. 2012;9(1):99–109.
  • Tobinick E, Rodriguez-Romanacce H, Levine A, et al. Immediate neurological recovery following perispinal etanercept years after brain injury. Clin Drug Investig. 2014;34(5):361–366.
  • Tobinick E, Rodriguez-Romanacce H, Kinssies R, et al. Perispinal etanercept for traumatic brain injury. In: Heidenreich KA, editor. Chapter 7, new therapeutics for traumatic brain injury. New York: Academic Press/Elsevier; 2017.
  • Gerhard A, Schwarz J, Myers R, et al. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage. 2005;24(2):591–595.
  • Pappata S, Levasseur M, Gunn RN, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology. 2000;55(7):1052–1054.
  • Beattie EC, Stellwagen D, Morishita W, et al. Control of synaptic strength by glial TNFalpha. Science. 2002;295(5563):2282–2285.
  • Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2007;13(2):54–63.
  • Santello M, Volterra A. TNFalpha in synaptic function: switching gears. Trends Neurosci. 2012;35(10):638–647.
  • Bains JS, Oliet SH. Glia: they make your memories stick!. Trends Neurosci. 2007;30(8):417–424.
  • Spriggs DR, Sherman ML, Michie H, et al. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study. J Natl Cancer Inst. 1988;80(13):1039–1044.
  • Schwartz JE, Scuderi P, Wiggins C, et al. A phase I trial of recombinant tumor necrosis factor (rTNF) administered by continuous intravenous infusion in patients with disseminated malignancy. Biotherapy. 1989;1(3):207–214.
  • Qin L, Wu X, Block ML, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453–462.
  • Riazi K, Galic MA, Kuzmiski JB, et al. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA. 2008;105(44):17151–17156.
  • Zaremba J, Skrobanski P, Losy J. Tumour necrosis factor-alpha is increased in the cerebrospinal fluid and serum of ischaemic stroke patients and correlates with the volume of evolving brain infarct. Biomed Pharmacother. 2001;55(5):258–263.
  • Tarkowski E, Andreasen N, Tarkowski A, et al. Intrathecal inflammation precedes development of alzheimer's disease. J Neurol Neurosurg Psychiatry. 2003;74(9):1200–1205.
  • Bonizzato S, Ghiggia A, Ferraro F, et al. Cognitive, behavioral, and psychological manifestations of COVID-19 in post-acute rehabilitation setting: preliminary data of an observational study. Neurol Sci. 2022;43(1):51–58.
  • Hosp JA, Dressing A, Blazhenets G, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021;144(4):1263–1276.
  • Matos AMB, Dahy FE, de Moura JVL, NeuroCovBR Study Group, et al. Subacute cognitive impairment in individuals with mild and moderate COVID-19: a case series. Front Neurol. 2021;12:678924.
  • Shanley JE, Valenciano AF, Timmons G, et al. Longitudinal evaluation of neurologic-post acute sequelae SARS-CoV-2 infection symptoms. Ann Clin Transl Neurol. 2022. DOI:10.1002/acn3.51578
  • Di Pietro DA, Comini L, Gazzi L, et al. Neuropsychological pattern in a series of Post-Acute COVID-19 patients in a rehabilitation unit: Retrospective analysis and correlation with functional outcomes. Int J Environ Res Public Health. 2021;18(11):5917.
  • Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK biobank. Nature. 2022;604(7907):697–707.
  • Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products, guidance for industry. Silver Spring, MD: U.S. Food and Drug Administration, Center for Biologics Evaluation and Research; 2019. Available from: https://www.regulations.gov/document/FDA-2012-D-1145-0040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.