3,237
Views
5
CrossRef citations to date
0
Altmetric
Odyssey of Diabetes & Metabolic Disease

Vascular complications in prediabetes and type 2 diabetes: a continuous process arising from a common pathology

&
Pages 1841-1851 | Received 14 Jun 2022, Accepted 11 Jul 2022, Published online: 27 Jul 2022

References

  • Genuth S, Alberti KG, Bennett P, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–3167.
  • Barr EL, Boyko EJ, Zimmet PZ, et al. Continuous relationships between non-diabetic hyperglycaemia and both cardiovascular disease and all-cause mortality: the Australian diabetes, obesity, and lifestyle (AusDiab) study. Diabetologia. 2009;52(3):415–424.
  • Cosentino F, Grant PJ, Aboyans V, ESC Scientific Document Group, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.
  • American diabetes association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–S38.
  • Echouffo-Tcheugui JB, Selvin E. Prediabetes and what it means: the epidemiological evidence. Annu Rev Public Health. 2021;42:59–77.
  • Hostalek U, Campbell I. Metformin for diabetes prevention: update of the evidence base. Curr Med Res Opin. 2021;37(10):1705–1717.
  • World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. Report of a WHO/IDF consultation; 2021 [cited 2021 May]. Available from: https://www.who.int/diabetes/publications/Definitionanddiagnosisofdiabetes_new.pdf.
  • International Expert Committee. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32:1327–1334.
  • Karnchanasorn R, Huang J, Ou HY, et al. Comparison of the current diagnostic criterion of HbA1c with fasting and 2-hour plasma glucose concentration. J Diabetes Res. 2016;2016:1–11.
  • Kumar R, Nandhini LP, Kamalanathan S, et al. Evidence for current diagnostic criteria of diabetes mellitus. World J Diabetes. 2016;7(17):396–405.
  • López-Jaramillo P, Velandia-Carrillo C, Gómez-Arbeláez D, et al. Is the present cut-point to define type 2 diabetes appropriate in Latin-Americans? World J Diabetes. 2014;5(6):747–755.
  • Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–412.
  • Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Emerging Risk Factors Collaboration, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–841.
  • Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.
  • Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–1350.
  • DECODE Study Group, on Behalf of the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality. Arch Intern Med. 2001;161:397–404.
  • Edelstein SL, Knowler WC, Bain RP, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46(4):701–710.
  • Gerstein HC, Santaguida P, Raina P, et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007;78(3):305–312.
  • Richter B, Hemmingsen B, Metzendorf MI, et al. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst Rev. 2018;10:CD012661.
  • Zhang X, Gregg EW, Williamson DF, et al. A1C level and future risk of diabetes: a systematic review. Diabetes Care. 2010;33(7):1665–1673.
  • van Herpt TTW, Ligthart S, Leening MJG, et al. Lifetime risk to progress from pre-diabetes to type 2 diabetes among women and men: comparison between American Diabetes Association and World Health Organization diagnostic criteria. BMJ Open Diab Res Care. 2020;8(2):e001529.
  • Burgess S, Malik R, Liu B, et al. Dose-response relationship between genetically proxied average blood glucose levels and incident coronary heart disease in individuals without diabetes mellitus. Diabetologia. 2021;64(4):845–849.
  • Barr EL, Zimmet PZ, Welborn TA, et al. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian diabetes, obesity, and lifestyle study (AusDiab). Circulation. 2007;116(2):151–157.
  • Wen CP, Cheng TY, Tsai SP, et al. Increased mortality risks of pre-diabetes (impaired fasting glucose) in Taiwan. Diabetes Care. 2005;28(11):2756–2761.
  • Sorkin JD, Muller DC, Fleg JL, et al. The relation of fasting and 2-h post challenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of aging with a critical review of the literature. Diabetes Care. 2005;28(11):2626–2632.
  • Saydah SH, Loria CM, Eberhardt MS, et al. Subclinical states of glucose intolerance and risk of death in the U.S. Diabetes Care. 2001;24(3):447–453.
  • Deedwania P, Patel K, Fonarow GC, et al. Prediabetes is not an independent risk factor for incident heart failure, other cardiovascular events or mortality in older adults: findings from a population-based cohort study. Int J Cardiol. 2013;168(4):3616–3622.
  • Neves JS, Correa S, Baeta Baptista R, et al. Association of prediabetes with CKD progression and adverse cardiovascular outcomes: an analysis of the CRIC study. J Clin Endocrinol Metab. 2020;105(4):e1772–e1780.
  • Vistisen D, Witte DR, Brunner EJ, et al. Risk of cardiovascular disease and death in individuals with prediabetes defined by different criteria: the whitehall II study. Diabetes Care. 2018;41(4):899–906.
  • Welsh C, Welsh P, Celis-Morales CA, et al. Glycated hemoglobin, prediabetes, and the links to cardiovascular disease: data from UK biobank. Diabetes Care. 2020;43(2):440–445.
  • Hulman A, Vistisen D, Glümer C, et al. Glucose patterns during an oral glucose tolerance test and associations with future diabetes, cardiovascular disease and all-cause mortality rate. Diabetologia. 2018;61(1):101–107.
  • Nezu T, Hosomi N, Aoki S, et al. Carotid intima-media thickness for atherosclerosis. J Atheroscler Thromb. 2016;23(1):18–31.
  • Bulut A, Avci B. Carotid intima-media thickness values are significantly higher in patients with prediabetes compared to normal glucose metabolism. Medicine. 2019;98(44):e17805.
  • Xing FY, Neeland IJ, Gore MO, et al. Association of prediabetes by fasting glucose and/or haemoglobin A1c levels with subclinical atherosclerosis and impaired renal function: observations from the Dallas Heart Study. Diab Vasc Dis Res. 2014;11(1):11–18.
  • Mutie PM, Pomares-Millan H, Atabaki-Pasdar N, et al. An investigation of causal relationships between prediabetes and vascular complications. Nat Commun. 2020;11(1):4592.
  • Gujral UP, Jagannathan R, He S, et al. Association between varying cut-points of intermediate hyperglycemia and risk of mortality, cardiovascular events and chronic kidney disease: a systematic review and meta-analysis. BMJ Open Diab Res Care. 2021;9(1):e001776.
  • Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol. 2010;55(13):1310–1317.
  • Dunlay SM, Givertz MM, Aguilar D, American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and the Heart Failure Society of America, et al. Type 2 diabetes mellitus and heart failure: a scientific statement from the American Heart Association and the Heart Failure Society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019;140(7):e294–e324.
  • Sinha A, Ning H, Ahmad FS, et al. Association of fasting glucose with lifetime risk of incident heart failure: the lifetime risk pooling project. Cardiovasc Diabetol. 2021;20(1):66.
  • Cai X, Liu X, Sun L, et al. Prediabetes and the risk of heart failure: a meta-analysis. Diabetes Obes Metab. 2021;23(8):1746–1753.
  • Kristensen SL, Preiss D, Jhund PS, et al. Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail. 2016;9:e002560.
  • Mai L, Wen W, Qiu M, et al. Association between prediabetes and adverse outcomes in heart failure. Diabetes Obes Metab. 2021;23(11):2476–2483.
  • Pavlović A, Polovina M, Ristić A, et al. Long-term mortality is increased in patients with undetected prediabetes and type-2 diabetes hospitalized for worsening heart failure and reduced ejection fraction. Eur J Prev Cardiol. 2019;26(1):72–82.
  • Erdogan D, Yucel H, Uysal BA, et al. Effects of prediabetes and diabetes on left ventricular and coronary microvascular functions. Metabolism. 2013;62(8):1123–1130.
  • Atar AI, Altuner TK, Bozbas H, et al. Coronary flow reserve in patients with diabetes mellitus and prediabetes. Echocardiography. 2012;29(6):634–640.
  • Huemer MT, Huth C, Schederecker F, et al. Association of endothelial dysfunction with incident prediabetes, type 2 diabetes and related traits: the KORA F4/FF4 study. BMJ Open Diab Res Care. 2020;8(1):e001321.
  • Selvin E, Lazo M, Chen Y, et al. Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. Circulation. 2014;130(16):1374–1382.
  • Diabetes prevention program research group. The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the diabetes prevention program. Diabet Med. 2007;24:137–144.
  • Sörensen BM, Houben AJ, Berendschot TT, et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction: the Maastricht Study. Circulation. 2016;134(18):1339–1352.
  • Li W, Schram MT, Berendschot TTJM, et al. Type 2 diabetes and HbA1c are independently associated with wider retinal arterioles: the Maastricht Study. Diabetologia. 2020;63(7):1408–1417.
  • Lott ME, Slocomb JE, Shivkumar V, et al. Impaired retinal vasodilator responses in prediabetes and type 2 diabetes. Acta Ophthalmol. 2013;91(6):e462–e469.
  • De Clerck EEB, Schouten JSAG, Berendschot TTJM, et al. Macular thinning in prediabetes or type 2 diabetes without diabetic retinopathy: the Maastricht Study. Acta Ophthalmol. 2018;96(2):174–182.
  • Chande PK, Raman R, John P, et al. Contrast-sensitivity function and photo stress-recovery time in prediabetes. OPTO. 2020;12:151–155.
  • Zaleska-Żmijewska A, Piątkiewicz P, Śmigielska B, et al. Retinal photoreceptors and microvascular changes in prediabetes measured with adaptive optics (rtx1™): a case-control study. J Diabetes Res. 2017;2017:1–9.
  • Palladino R, Tabak AG, Khunti K, et al. Association between pre-diabetes and microvascular and macrovascular disease in newly diagnosed type 2 diabetes. BMJ Open Diab Res Care. 2020;8(1):e001061.
  • Li Rudvan AL, Can ME, Efe FK, et al. Evaluation of retinal microvascular changes in patients with prediabetes. Niger J Clin Pract. 2021;24(6):911–918.
  • Katon JG, Reiber GE, Nelson KM. Peripheral neuropathy defined by monofilament insensitivity and diabetes status: NHANES 1999-2004. Diabetes Care. 2013;36(6):1604–1606.
  • Bongaerts BW, Rathmann W, Kowall B, et al. Postchallenge hyperglycemia is positively associated with diabetic polyneuropathy: the KORA F4 study. Diabetes Care. 2012;35(9):1891–1893.
  • Kirthi V, Perumbalath A, Brown E, et al. Prevalence of peripheral neuropathy in pre-diabetes: a systematic review. BMJ Open Diab Res Care. 2021;9(1):e002040.
  • Dyck PJ, Clark VM, Overland CJ, et al. Impaired glycemia and diabetic polyneuropathy: the OC IG survey. Diabetes Care. 2012;35(3):584–591.
  • Thaisetthawatkul P, Lyden E, Americo Fernandes J, Jr, et al. Prediabetes, diabetes, metabolic syndrome, and small fiber neuropathy. Muscle Nerve. 2020;61(4):475–479.
  • De Clerck EEB, Schouten JSAG, Berendschot TTJM, et al. Reduced corneal nerve fibre length in prediabetes and type 2 diabetes: the Maastricht Study. Acta Ophthalmol. 2020;98(5):485–491.
  • Azmi S, Ferdousi M, Petropoulos IN, et al. Corneal confocal microscopy identifies small-fiber neuropathy in subjects with impaired glucose tolerance who develop type 2 diabetes. Diabetes Care. 2015;38(8):1502–1508.
  • Coopmans C, Zhou TL, Henry RMA, et al. Both prediabetes and type 2 diabetes are associated with lower heart rate variability: the Maastricht Study. Diabetes Care. 2020;43(5):1126–1133.
  • Ziegler D, Voss A, Rathmann W, KORA Study Group, et al. Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: the KORA S4 survey. Diabetologia. 2015;58(5):1118–1128.
  • Lin YC, Lin CS, Chang TS, et al. Early sensory neurophysiological changes in prediabetes. J Diabetes Investig. 2020;11(2):458–465.
  • Marseglia A, Fratiglioni L, Kalpouzos G, et al. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: a population-based cohort study. Alzheimers Dement. 2019;15(1):25–33.
  • van Agtmaal MJM, Houben AJHM, de Wit V, et al. Prediabetes is associated with structural brain abnormalities: the maastricht study. Diabetes Care. 2018;41(12):2535–2543.
  • Casagrande SS, Lee C, Stoeckel LE, et al. Cognitive function among older adults with diabetes and prediabetes, NHANES 2011–2014. Diabetes Res Clin Pract. 2021;178:108939.
  • Plantinga LC, Crews DC, Coresh J, for the CDC CKD Surveillance Team, et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. CJASN. 2010;5(4):673–682.
  • Kim GS, Oh HH, Kim SH, et al. Association between prediabetes (defined by HbA1C, fasting plasma glucose, and impaired glucose tolerance) and the development of chronic kidney disease: a 9-year prospective cohort study. BMC Nephrol. 2019;20(1):130.
  • Markus MRP, Ittermann T, Baumeister SE, et al. Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population: the KORA (cooperative health research in the augsburg region) F4-Study. Nutr Metab Cardiovasc Dis. 2018;28(3):234–242.
  • Furukawa M, Onoue T, Kato K, et al. Prediabetes is associated with proteinuria development but not with glomerular filtration rate decline: a longitudinal observational study. Diabet Med. 2021;38(8):e14607.
  • Sumbul HE, Koc AS, Gülümsek E. Renal cortical stiffness is markedly increased in pre-diabetes mellitus and associated with albuminuria. Singapore Med J. 2020;61(8):435–442.
  • Shilpasree AS, Patil VS, Revanasiddappa M, et al. Renal dysfunction in prediabetes: confirmed by glomerular hyperfiltration and albuminuria. J Lab Physicians. 2021;13(03):257–262.
  • Rodriguez-Poncelas A, Coll-de-Tuero G, Blanch J, et al. Prediabetes is associated with glomerular hyperfiltration in a european mediterranean cohort study. J Nephrol. 2018;31(5):743–749.
  • Rodríguez-Poncelas A, Franch-Nadal J, Coll-de Tuero G, et al. High levels of fasting glucose and glycosylated hemoglobin values are associated with hyperfiltration in a Spanish prediabetes cohort. The PREDAPS study. PLOS One. 2019;14(9):e0222848.
  • Okada R, Wakai K, Naito M, et al. Renal hyperfiltration in prediabetes confirmed by fasting plasma glucose and hemoglobin A1c. Ren Fail. 2012;34(9):1084–1090.
  • Obayashi K, Saeki K, Kurumatani N. Nighttime BP in elderly individuals with prediabetes/diabetes with and without CKD: the HEIJO-KYO study. CJASN. 2016;11(5):867–874.
  • Echouffo-Tcheugui JB, Narayan KM, Weisman D, et al. Association between prediabetes and risk of chronic kidney disease: a systematic review and meta-analysis. Diabet Med. 2016;33(12):1615–1624.
  • Ali MK, Bullard KM, Saydah S, et al. Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol. 2018;6(5):392–403.
  • DECODE study group, European Diabetes Epidemiology Group. Glucose tolerance and mortality: comparison of WHO and American diabetes association diagnostic criteria. Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe. Lancet. 1999;354:617–621.
  • Al-Zahrani JM, Aldiab A, Aldossari KK, et al. Prevalence of prediabetes, diabetes and its predictors among females in Alkharj, Saudi Arabia: a cross-sectional study. Ann Glob Health. 2019;85:109.
  • Pedicelli S, Fintini D, Ravà L, et al. Prevalence of prediabetes in children and adolescents by class of obesity. Pediatr Obes. 2022;17:e12900.
  • Perreault L. Goals for medical treatment in obesity and prediabetes: improving outcomes for both. Endocr Pract. 2018;24(12):1093–1098.
  • La Sala L, Pontiroli AE. Prevention of diabetes and cardiovascular disease in obesity. IJMS. 2020;21(21):8178.
  • Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes. 2020;13:3611–3616.
  • Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation. 2011;124(24):e837–e841.
  • Berezin AE, Berezin AA, Lichtenauer M. Emerging role of adipocyte dysfunction in inducing heart failure among obese patients with prediabetes and known diabetes mellitus. Front Cardiovasc Med. 2020;7:583175.
  • Haboubi N, Williams H, Al-Ansari A. Adiposity and neurological disorders: a review. EMJ Neurol. 2022. DOI:10.33590/emjneurol/21-00177
  • Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25(5):909–920.
  • Hanssen NMJ, Scheijen JLJM, Houben AJHM, et al. Fasting and post-oral-glucose-load levels of methylglyoxal are associated with microvascular, but not macrovascular, disease in individuals with and without (pre)diabetes: the Maastricht Study. Diabetes Metab. 2021;47(1):101148.
  • Alexandru N, Procopciuc A, Vîlcu A, et al. Extracellular vesicles-incorporated microRNA signature as biomarker and diagnosis of prediabetes state and its complications. Rev Endocr Metab Disord. 2022;23(3):309–332.
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–1625.
  • van Sloten TT, Sedaghat S, Carnethon MR, et al. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020;8(4):325–336.
  • Modjadji P. Communicable and non-communicable diseases coexisting in South Africa. Lancet Glob Health. 2021;9(7):e889–e890.
  • Assaad Khalil SH, Abdelaziz SI, Al Shammary A, et al. Prediabetes management in the Middle East, Africa and Russia: current status and call for action. Diab Vasc Dis Res. 2019;16(3):213–226.
  • Houle B, Clark SJ, Gómez-Olivé FX, et al. The unfolding counter-transition in rural South Africa: mortality and cause of death, 1994–2009. PLOS One. 2014;9(6):e100420.
  • Hostalek U, Gwilt M, Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs. 2015;75(10):1071–1094.
  • Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing diabetes prevention outcome study. Lancet Diabetes Endocrinol. 2019;7(6):452–461.
  • National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes prevention program outcomes study (DPPOS); 2021 [cited 2021 October]. Available from: https://repository.niddk.nih.gov/studies/dppos.
  • Diabetes Prevention Program Group and Diabetes Prevention Program Outcome Study Research Group. New data on clinical outcomes from the Diabetes Prevention Program Outcomes Study. Presentation at the 80th Virtual Scientific Sessions of the American Diabetes Association, June 26 2020.
  • Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the diabetes prevention program outcomes study. Lancet Diabetes Endocrinol. 2015;3:866–875.
  • Busko M. DPPOS at 22 years: 'diabetes prevention is possible' long term. Medscape Diabetes & Endocrinology; 2021 [cited 2021 May]. Available from: https://www.medscape.com/viewarticle/932876.
  • White NH, Qing P, for the Diabetes Prevention Program Research Group, et al. The effect of interventions to prevent type 2 diabetes on the development of diabetic retinopathy: the DPP/DPPOS experience. Diabetes Care. 2022;45(7):1640–1646.
  • Perreault L, Pan Q, Schroeder EB, Diabetes Prevention Program Research Group, et al. Regression from prediabetes to normal glucose regulation and prevalence of microvascular disease in the diabetes prevention program outcomes study (DPPOS). Diabetes Care. 2019;42:1809–1815.
  • Naik V, Dave R, Stephens JW, et al. Evidence based prevention of type 2 diabetes: role of lifestyle intervention as compared to pharmacological agents. Int J Diabetes Clin Res. 2015;2:6.
  • Chiasson JL, Josse RG, Gomis R, STOP-NIDDM Trial Research Group, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–494.
  • Kaiser T, Sawicki PT. Acarbose for prevention of diabetes, hypertension and cardiovascular events? A critical analysis of the STOP-NIDDM data. Diabetologia. 2004;47(3):575–580.
  • Inzucchi SE, Docherty KF, Køber L, et al. Dapagliflozin and the incidence of type 2 diabetes in patients with heart failure and reduced ejection fraction: an exploratory analysis from DAPA-HF. Diabetes Care. 2021;44(2):586–594.
  • le Roux CW, Astrup A, Fujioka K, et al. 3 Years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–1409.
  • University College London. Press release: pre-diabetes label 'unhelpful and unnecessary; 16 July 2014 [cited 2021 October). Available from: https://www.ucl.ac.uk/news/2014/jul/pre-diabetes-label-unhelpful-and-unnecessary.
  • Centers for Disease Control and Prevention. National diabetes statistics report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, US Dept of Health and Human Services; 2020 [cited 2020 October]. Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html.
  • Libman IM, Barinas-Mitchell E, Bartucci A, et al. Reproducibility of the oral glucose tolerance test in overweight children. J Clin Endocrinol Metab. 2008;93(11):4231–4237.
  • Shang Y, Marseglia A, Fratiglioni L, et al. Natural history of prediabetes in older adults from a population-based longitudinal study. J Intern Med. 2019;286(3):326–340.
  • Murray P, Chune GW, Raghavan VA. Legacy effects from DCCT and UKPDS: what they mean and implications for future diabetes trials. Curr Atheroscler Rep. 2010;12(6):432–439.
  • UK Prospective Diabetes Study Group. Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–865.
  • Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-Year follow-up. Diabetes Care. 2016;39:686–693.
  • Lipska KJ, Laiteerapong N. Lack of glycemic legacy effects in the veterans affairs diabetes trial. N Engl J Med. 2019;380(23):2266–2267.
  • Yudkin JS, Montori VM. The epidemic of pre-diabetes: the medicine and the politics. BMJ. 2014;349:g4485.