168
Views
0
CrossRef citations to date
0
Altmetric
Genomic Medicine

Overview of gene expression techniques with an emphasis on vitamin D related studies

ORCID Icon & ORCID Icon
Pages 205-217 | Received 26 Jul 2022, Accepted 01 Dec 2022, Published online: 28 Dec 2022

References

  • Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–563.
  • Papatheodorou I, Oellrich A, Smedley D. Linking gene expression to phenotypes via pathway information. J Biomed Semantics. 2015;6:17.
  • Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet. 2020;21(10):630–644.
  • Henriksen PA, Kotelevtsev Y. Application of gene expression profiling to cardiovascular disease. Cardiovasc Res. 2002;54(1):16–24.
  • Sepulveda-Villegas M, Elizondo-Montemayor L, Trevino V. Identification and analysis of 35 genes associated with vitamin D deficiency: a systematic review to identify genetic variants. J Steroid Biochem Mol Biol. 2020;196:105516.
  • Freeman WM, Robertson DJ, Vrana KE. Fundamentals of DNA hybridization arrays for gene expression analysis. Biotechniques. 2000;29(5):1042–1046, 1048–1055.
  • Tüzmen Ş, Baskın Y, Feyda Nursal A, et al. Techniques for nucleic acid engineering: the foundation of gene manipulation. In: Barh D, Azevedo V, editors. Omics technologies and bio-engineering. Cambridge (MA): Academic Press; 2018. p. 247–315.
  • Lovatt D, Eberwine J. Northern blotting. In: Maloy S, Hughes K, editors. Brenner’s encyclopedia of genetics. 2nd ed. Cambridge (MA): Academic Press; 2013. p. 105–107.
  • He SL, Green R. Northern blotting. Methods Enzymol. 2013;530:75–87.
  • Bhattacharya A, Chaturvedi G, Singhal K, et al. Experimental toolkit to study RNA level regulation. In: Pandey R, editor. Translational epigenetics. Cambridge (MA): Academic Press; 2020. p. 371–396.
  • Jensen EC. The basics of Western blotting. Anat Rec. 2012;295(3):369–371.
  • Lee C. Western blotting. Methods Mol Biol. 2007;362:391–399.
  • Kurien BT, Scofield RH. Western blotting: an introduction. Methods Mol Biol. 2015;1312:17–30.
  • Kurien BT, Scofield RH. Western blotting. Methods. 2006;38(4):283–293.
  • Bachman J. Reverse-transcription PCR (RT-PCR). Methods Enzymol. 2013;530:67–74.
  • Bustin SA, Benes V, Nolan T, et al. Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol. 2005;34(3):597–601.
  • Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559–1582.
  • Larsson O, Wennmalm K, Sandberg R. Comparative microarray analysis. OMICS. 2006;10(3):381–397.
  • Eisen MB, Brown PO. DNA arrays for analysis of gene expression. Methods Enzymol. 1999;303:179–205.
  • Loewe RP, Nelson PJ. Microarray bioinformatics. Methods Mol Biol. 2011;671:295–320.
  • Tzouvelekis A, Patlakas G, Bouros D. Application of microarray technology in pulmonary diseases. Respir Res. 2004;5(1):26.
  • Russo G, Zegar C, Giordano A. Advantages and limitations of microarray technology in human cancer. Oncogene. 2003;22(42):6497–6507.
  • Benesova S, Kubista M, Valihrach L. Small RNA-sequencing: approaches and considerations for miRNA analysis. Diagnostics. 2021;11(6):964.
  • Murdock DR. Enhancing diagnosis through RNA sequencing. Clin Lab Med. 2020;40(2):113–119.
  • Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015(11):951–969.
  • Neme A, Nurminen V, Seuter S, et al. The vitamin D-dependent transcriptome of human monocytes. J Steroid Biochem Mol Biol. 2016;164:180–187.
  • Zhao S, Fung-Leung WP, Bittner A, et al. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLOS One. 2014;9(1):e78644.
  • Kremer LS, Bader DM, Mertes C, et al. Genetic diagnosis of mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.
  • Whitley SK, Horne WT, Kolls JK. Research techniques made simple: methodology and clinical applications of RNA sequencing. J Invest Dermatol. 2016;136(8):e77–e82.
  • Grun D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163(4):799–810.
  • Yamada S, Nomura S. Review of single-cell RNA sequencing in the heart. Int J Mol Sci. 2020;21(21):8345.
  • Haque A, Engel J, Teichmann SA, et al. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75.
  • Regev A, Teichmann SA, Lander ES, et al. The human cell atlas. eLife. 2017;6:e27041.
  • Hedlund E, Deng Q. Single-cell RNA sequencing: technical advancements and biological applications. Mol Aspects Med. 2018;59:36–46.
  • Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317.
  • Dries R, Chen J, Del Rossi N, et al. Advances in spatial transcriptomic data analysis. Genome Res. 2021;31(10):1706–1718.
  • Rao A, Barkley D, Franca GS, et al. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596(7871):211–220.
  • Pineiro AJ, Houser AE, Ji AL. Research techniques made simple: spatial transcriptomics. J Invest Dermatol. 2022;142(4):993–1001.e1.
  • He S, Wang LH, Liu Y, et al. Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol. 2020;21(1):294.
  • Palmer C, Diehn M, Alizadeh AA, et al. Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics. 2006;7:115.
  • He D, Yang CX, Sahin B, et al. Whole blood vs PBMC: compartmental differences in gene expression profiling exemplified in asthma. Allergy Asthma Clin Immunol. 2019;15:67.
  • Pope SD, Medzhitov R. Emerging principles of gene expression programs and their regulation. Mol Cell. 2018;71(3):389–397.
  • Grieshaber-Bouyer R, Radtke FA, Cunin P, et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat Commun. 2021;12(1):2856.
  • Wong L, Jiang K, Chen Y, et al. Limits of peripheral blood mononuclear cells for gene expression-based biomarkers in juvenile idiopathic arthritis. Sci Rep. 2016;6:29477.
  • de Mello VD, Kolehmanien M, Schwab U, et al. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr Food Res. 2012;56(7):1160–1172.
  • Sen P, Kemppainen E, Oresic M. Perspectives on systems modeling of human peripheral blood mononuclear cells. Front Mol Biosci. 2017;4:96.
  • Whitney AR, Diehn M, Popper SJ, et al. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA. 2003;100(4):1896–1901.
  • Lee EH, Oh JH, Park HJ, et al. Simultaneous gene expression signature of heart and peripheral blood mononuclear cells in astemizole-treated rats. Arch Toxicol. 2010;84(8):609–618.
  • Min JL, Barrett A, Watts T, et al. Variability of gene expression profiles in human blood and lymphoblastoid cell lines. BMC Genomics. 2010;11:96.
  • Joehanes R, Johnson AD, Barb JJ, et al. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham heart study. Physiol Genomics. 2012;44(1):59–75.
  • Bondar G, Cadeiras M, Wisniewski N, et al. Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure. PLOS One. 2014;9(12):e115097.
  • Ronquillo MD, Mellnyk A, Cardenas-Rodriguez N, et al. Different gene expression profiles in subcutaneous & visceral adipose tissues from Mexican patients with obesity. Indian J Med Res. 2019;149(5):616–626.
  • van der Sijde F, Li Y, Schraauwen R, et al. RNA from stabilized whole blood enables more comprehensive immune gene expression profiling compared to RNA from peripheral blood mononuclear cells. PLOS One. 2020;15(6):e0235413.
  • Han X, Zhou Z, Fei L, et al. Construction of a human cell landscape at single-cell level. Nature. 2020;581(7808):303–309.
  • Debey S, Schoenbeck U, Hellmich M, et al. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. Pharmacogenomics J. 2004;4(3):193–207.
  • Chau YY, Kumar J. Vitamin D in chronic kidney disease. Indian J Pediatr. 2012;79(8):1062–1068.
  • Chang SW, Lee HC. Vitamin D and health – the missing vitamin in humans. Pediatr Neonatol. 2019;60(3):237–244.
  • Portale AA, Miller WL. Human 25-hydroxyvitamin D-1alpha-hydroxylase: cloning, mutations, and gene expression. Pediatr Nephrol. 2000;14(7):620–625.
  • Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12(7):2097.
  • Ding C, Gao D, Wilding J, et al. Vitamin D signalling in adipose tissue. Br J Nutr. 2012;108(11):1915–1923.
  • Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86(1):50–60.
  • Vondra K, Hampl R. Vitamin D and new insights into pathophysiology of type 2 diabetes. Horm Mol Biol Clin Investig. 2021;42(2):203–208.
  • Lowe KE, Maiyar AC, Norman AW. Vitamin D-mediated gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(1):65–109.
  • Wimalawansa SJ. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology. 2019;8(2):30.
  • Oczkowicz M, Szymczyk B, Świątkiewicz M, et al. Analysis of the effect of vitamin D supplementation and sex on Vdr, Cyp2r1 and Cyp27b1 gene expression in Wistar rats’ tissues. J Steroid Biochem Mol Biol. 2021;212:105918.
  • Visscher PM, Brown MA, McCarthy MI, et al. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.
  • Revez JA, Lin T, Qiao Z, et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 2020;11(1):1647.
  • Nurminen V, Neme A, Seuter S, et al. Modulation of vitamin D signaling by the pioneer factor CEBPA. Biochim Biophys Acta Gene Regul Mech. 2019;1862(1):96–106.
  • Dimitrov V, Barbier C, Ismailova A, et al. Vitamin D-regulated gene expression profiles: species-specificity and cell-specific effects on metabolism and immunity. Endocrinology. 2021;162(2):bqaa218.
  • Hossein-Nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88(7):720–755.
  • Chen YH, Cheadle CE, Rice LV, et al. The induction of alpha-1 antitrypsin by vitamin D in human T cells is TGF-beta dependent: a proposed anti-inflammatory role in airway disease. Front Nutr. 2021;8:667203.
  • Karampela I, Sakelliou A, Vallianou N, et al. Vitamin D and obesity: current evidence and controversies. Curr Obes Rep. 2021;10(2):162–180.
  • Mailhot G, White JH. Vitamin D and immunity in infants and children. Nutrients. 2020;12(5):1233.
  • Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med. 2022;193(Pt 1):253–273.
  • Hosseini ES, Kashani HH, Nikzad H, et al. Diabetic hemodialysis: vitamin D supplementation and its related signaling pathways involved in insulin and lipid metabolism. Curr Mol Med. 2019;19(8):570–578.
  • Hardiman G, Savage SJ, Hazard ES, et al. Systems analysis of the prostate transcriptome in African-American men compared with European-American men. Pharmacogenomics. 2016;17(10):1129–1143.
  • Schulz EV, Cruze L, Wei W, et al. Maternal vitamin D sufficiency and reduced placental gene expression in angiogenic biomarkers related to comorbidities of pregnancy. J Steroid Biochem Mol Biol. 2017;173:273–279.
  • Yadama AP, Mirzakhani H, McElrath TF, et al. Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth. PLOS One. 2020;15(1):e0227193.
  • Maleki F, Ovens K, Hogan DJ, et al. Gene set analysis: challenges, opportunities, and future research. Front Genet. 2020;11:654.
  • Fielden MR, Zacharewski TR. Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicol Sci. 2001;60(1):6–10.
  • Toro-Dominguez D, Villatoro-Garcia JA, Martorell-Marugan J, et al. A survey of gene expression meta-analysis: methods and applications. Brief Bioinform. 2021;22(2):1694–1705.
  • Naghavi Gargari B, Behmanesh M, Shirvani Farsani Z, et al. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. Int Immunopharmacol. 2015;28(1):414–419.
  • Mirzakhani H, Litonjua AA, McElrath TF, et al. Early pregnancy vitamin D status and risk of preeclampsia. J Clin Invest. 2016;126(12):4702–4715.
  • Pasing Y, Fenton CG, Jorde R, et al. Changes in the human transcriptome upon vitamin D supplementation. J Steroid Biochem Mol Biol. 2017;173:93–99.
  • Cummings LC, Thota PN, Willis JE, et al. A nonrandomized trial of vitamin D supplementation for Barrett’s esophagus. PLOS One. 2017;12(9):e0184928.
  • Scott JF, Das LM, Ahsanuddin S, et al. Oral vitamin D rapidly attenuates inflammation from sunburn: an interventional study. J Invest Dermatol. 2017;137(10):2078–2086.
  • Snijders T, Bell KE, Nederveen JP, et al. Ingestion of a multi-ingredient supplement does not alter exercise-induced satellite cell responses in older men. J Nutr. 2018;148(6):891–899.
  • Jamilian M, Samimi M, Mirhosseini N, et al. The influences of vitamin D and omega-3 co-supplementation on clinical, metabolic and genetic parameters in women with polycystic ovary syndrome. J Affect Disord. 2018;238:32–38.
  • Hornsby E, Pfeffer PE, Laranjo N, et al. Vitamin D supplementation during pregnancy: effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol. 2018;141(1):269–278.e1.
  • Dastorani M, Aghadavod E, Mirhosseini N, et al. The effects of vitamin D supplementation on metabolic profiles and gene expression of insulin and lipid metabolism in infertile polycystic ovary syndrome candidates for in vitro fertilization. Reprod Biol Endocrinol. 2018;16(1):94.
  • Pazhohan A, Amidi F, Akbari-Asbagh F, et al. Expression and shedding of CD44 in the endometrium of women with endometriosis and modulating effects of vitamin D: a randomized exploratory trial. J Steroid Biochem Mol Biol. 2018;178:150–158.
  • Berlanga-Taylor AJ, Plant K, Dahl A, et al. Genomic response to vitamin D supplementation in the setting of a randomized, placebo-controlled trial. EBioMedicine. 2018;31:133–142.
  • Nodehi M, Ajami A, Izad M, et al. Effects of vitamin D supplements on frequency of CD4(+) T-cell subsets in women with Hashimoto’s thyroiditis: a double-blind placebo-controlled study. Eur J Clin Nutr. 2019;73(9):1236–1243.
  • Hangelbroek RWJ, Vaes AMM, Boekschoten MV, et al. No effect of 25-hydroxyvitamin D supplementation on the skeletal muscle transcriptome in vitamin D deficient frail older adults. BMC Geriatr. 2019;19(1):151.
  • Shirvani A, Kalajian TA, Song A, et al. Disassociation of vitamin D's calcemic activity and non-calcemic genomic activity and individual responsiveness: a randomized controlled double-blind clinical trial. Sci Rep. 2019;9(1):17685.
  • Hauger H, Ritz C, Mortensen C, et al. Winter cholecalciferol supplementation at 55 degrees N has little effect on markers of innate immune defense in healthy children aged 4–8 years: a secondary analysis from a randomized controlled trial. Eur J Nutr. 2019;58(4):1453–1462.
  • Akutsu T, Okada S, Hirooka S, et al. Effect of vitamin D on relapse-free survival in a subgroup of patients with p53 protein-positive digestive tract cancer: a post hoc analysis of the AMATERASU trial. Cancer Epidemiol Biomarkers Prev. 2020;29(2):406–413.
  • Medeiros JFP, de Oliveira Borges MV, Soares AA, et al. The impact of vitamin D supplementation on VDR gene expression and body composition in monozygotic twins: randomized controlled trial. Sci Rep. 2020;10(1):11943.
  • Sharifi A, Vahedi H, Honarvar MR, et al. Vitamin D decreases CD40L gene expression in ulcerative colitis patients: a randomized, double-blinded, placebo-controlled trial. Turk J Gastroenterol. 2020;31(2):99–104.
  • Awe O, Sinkway JM, Chow RP, et al. Differential regulation of a placental SAM68 and sFLT1 gene pathway and the relevance to maternal vitamin D sufficiency. Pregnancy Hypertens. 2020;22:196–203.
  • Shirvani A, Kalajian TA, Song A, et al. Variable genomic and metabolomic responses to varying doses of vitamin D supplementation. Anticancer Res. 2020;40(1):535–543.
  • Molmen KS, Hammarstrom D, Pedersen K, et al. Vitamin D3 supplementation does not enhance the effects of resistance training in older adults. J Cachexia Sarcopenia Muscle. 2021;12(3):599–628.
  • Amirinejad R, Shirvani-Farsani Z, Naghavi Gargari B, et al. Vitamin D changes expression of DNA repair genes in the patients with multiple sclerosis. Gene. 2021;781:145488.
  • Makieva S, Reschini M, Ferrari S, et al. Oral vitamin D supplementation impacts gene expression in granulosa cells in women undergoing IVF. Hum Reprod. 2021;36(1):130–144.
  • Pazhohan A, Danaei-Mehrabad S, Mohamad-Rezaeii Z, et al. The modulating effects of vitamin D on the activity of beta-catenin in the endometrium of women with endometriosis: a randomized exploratory trial. Gynecol Endocrinol. 2021;37(3):278–282.
  • Agirbasli D, Kalyoncu M, Muftuoglu M, et al. Leukocyte telomere length as a compensatory mechanism in vitamin D metabolism. PLOS One. 2022;17(2):e0264337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.