19
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of Cysteine Proteinases by Autolytic Digestion is Mediated by CBP2/Hsp47

, , , , &
Pages 589-594 | Published online: 06 Aug 2009

References

  • Nagata, K., Saga, S., and Yamada, K.M. (1988). Characterization of a novel transformation-sensitive heat-shock protein (HSP47) that binds to collagen. Biochem. Biophys. Res. Commun. 153:428–434.
  • Nandan, D., Cates, G.A., Ball, E.H., and Sanwal, B.D. (1990). Partial characterization of a collagen-binding, differentiation-related glycoprotein from skeletal myoblasts. Arch. Biochem. Biophys. 278:291–296.
  • Sauk, J.J., Smith, T., Norris, K., and Ferreira, L. (1994). Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(l) chains of type I procollagen. J. Biol. Chem. 269:3941–3946.
  • Tasab, M., Batten, MR., and Bulleid, N.J. (2000). Hsp47: A molecular chaperone that interacts with and stabilizes correctly-folded procollagen EMBO J. 19:2204–2211.
  • Koide, T., Aso, A., Yorihuzi, T., and Nagata, K. (2000). Conformational requirements of collagenous peptides for recognition by the chaperone protein HSP47. J. Biol. Chem. 275:27957–27963.
  • Sauk, J., Norris, K., Hebert, C., Ordonez, J., and Reynolds, M. (1998). Hsp47 binds to the KDEL receptor and cell surface expression is modulated by cytoplasmic and endosomal pH. Connect. Tissue Res. 37:105–119.
  • Jain, N., Brickenden, A., Ball, E.H., and Sanwal, B.D. (1994). Inhibition of procollagen I degradation by colligin: A collagen-binding serpin. Arch. Biochem. Biophys. 314:23–30.
  • Nagai, N., Hosokawa, M., Itohara, S., Adachi, E., Matsushita, T., Hosokawa, N., and Nagata, K. (2000). Embryonic lethality of molecular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J. Cell. Biol. 150:1499–1506.
  • Clarke, E.P., Jain, N., Brickenden, A., Lorimer, I.A., and Sanwal, B.D. (1993). Parallel regulation of procollagen I and colligin, a collagen-binding protein and a member of the serine protease inhibitor family. J. Cell. Biol. 121:193–199.
  • Shieh, B.H., and Travis, J. (1987). The reactive site of human alpha 2-antiplasmin. J. Biol. Chem. 262:6055–6059.
  • Bjork, I., Nordling, K., Raub-Segall, E., Hellman, U., and Olson, S.T. (1998). Inactivation of papain by antithrombin due to autolytic digestion: A model of serpin inactivation of cysteine proteinases. Biochem. J. 335 (Pt. 3), 701–709.
  • Hook, V.Y., Purviance, R.T., Azaryan, A.V., Hubbard, G., and Krieger, T.J. (1993). Purification and characterization of alpha 1-antichymotrypsin-like protease inhibitor that regulates prohormone thiol protease involved in enkephalin precursor processing. J. Biol. Chem. 268:20570–20577.
  • Komiyama, T., Ray, C.A., Pickup, D.J., Howard, A.D., Thornberry, N.A., Peterson, E.P., and Salvesen, G. (1994). Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin Crm A: An example of cross-class inhibition. J. Biol. Chem. 269:19331–19337.
  • Luke, C., Schick, C., Tsu, C., Whisstock, J.C., Irving, J.A., Bromme, D., Juliano, L., Shi, G.P., Chapman, H.A., and Silverman, G.A. (2000). Simple modifications of the serpin reactive site loop convert SCCA2 into a cysteine proteinase inhibitor: A critical role for the P31 proline in facilitating RSL cleavage. Biochemistry 39:7081–7091.
  • Bjork, I., and Ylinenjarvi, K. (1990). Interaction between chicken cystatin and the cysteine proteinases actinidin, chymopapain A, and ficin. Biochemistry 29:1770–1776.
  • Olson, S.T., Bjork, I., and Shore, J.D. (1993). Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol. 222:525–559.
  • Hebert, C., Norris, K., Della-Coletta, R., Reynolds, M., Ordonez, J., and Sauk, J.J. (1999). Cell surface colligin/hsp47 associates with tetraspanin protein CD9 in epidermoid carcinoma cell lines. J. Cell. Biochem. 73(2): 248–58.
  • Ackley, B.D., Crew, J.R., Elamaa, H., Pihlajaniemi, T., Kuo, C.J., and Kramer, J.M. (2001). The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J. Cell. Biol. 152:1219–1232.
  • Kuo, C.J., LaMontagne, K.R., Jr., Garcia-Cardena, G., Ackley, B.D., Kalman, D., Park, S., Christofferson, R., Kamihara, J., Ding, Y.H., Lo, K.M., Gillies, S., Folkman, J., Mulligan, R.C., and Javaherian, K. (2001). Oligomerization-dependent regulation of motility and morphogenesis by the collagen XVIII NC1/endostatin domain. J. Cell. Biol. 152: 1233–1246.
  • Toman, P.D., Chisholm, G., McMullin, H., Giere, L.M., Olsen, D.R., Kovach, R.J., Leigh, S.D., Fong, B.E., Chang, R., Daniels, G.A., Berg, R.A., and Hitzeman, R.A. (2000). Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 275:23303–23309.
  • Myllyharju, J., Lamberg, A., Notbohm, H., Fietzek, P.P., Pihlajaniemi, T., Kivirikko, K.I. (1997). Expression of wild-type and modified proα chains of human type I procollagen in insect cells leads to the formation of stable [α1(l)]3 homotrimers but not [α2(l)]3 homotrimers. J. Biol. Chem. 272:21824–21830.
  • Sauk, J.J., Coletta, R.D., Norris, K., and Hebert, C. (2000). Binding motifs of CBP2 a potential cell surface target for carcinoma cells. J. Cell. Biochem. 78:251–263.
  • Hattori, T., Kubota, S., Yutani, Y., Fujisawa, T., Nakanishi, T., Takahashi, K., and Takigawa, M. (2001). Change in cellular localization of a rheumatoid arthritis-related antigen (RA-A-47) with downregulation upon stimulation by inflammatory cytokines in chondrocytes. J. Cell. Physiol. 186:268–281.
  • Kuo, C.J., LaMontagne, K.R., Jr., Garcia-Cardena, G., Ackley, B.D., Kalman, D., Park, S., Christofferson, R., Kamihara, J., Ding, Y.H., Lo, K.M., Gillies, S., Folkman, J., Mulligan, R.C., and Javaherian, K. (2001). Oligomerization-dependent regulation of motility and morphogenesis by collagen XVIII NC1/endostatin domain. J. Cell. Biol. 152: 1233–1246.
  • Marneros, A.G., and Olsen, B.R. (2001). The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol. 20:337–345.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.