19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Detailed Morphology and Distribution of Gap Junction Protein Associated with Cells from the Intra-Articular Disc of the Rat Temporomandibular Joint

&
Pages 12-18 | Published online: 06 Aug 2009

  • Chen, W.-T. (1981). Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol. 90:187-200.
  • Tomasek, K.T., Hay, E.D., and Fujiwara, K. (1982). Collagen modulates cell shape and cytoskeleton of embryonic corneal and fibroma fibroblasts: Distribution of actin, alpha-actin, and myosin. Dev. Biol. 92:107-122.
  • Bellows, C.G., Melcher, A.H., Bharga, U., and Aubin, J.E. (1982). Fibroblasts contracting three-dimensional collagen gels exhibit ultrastructure consistent with either contraction or protein synthesis. J. Ultrastruct. Res. 78:178-192.
  • Mochitate, K., Pawelek, P., and Grinnell, F. (1991). Stress relaxation of contracted collagen gels: Disruption of actin filament bundles, release of cell surface fibronectin, and down regulation of DNA and protein synthesis. Exp. Cell Res. 193:198-207.
  • Baschong, W., Sutterlin, R., and Aebi, U. (1997). Punch-wounded, fibroblast populated collagen matrices: A novel approach for studying cytoskeletal changes in three dimensions by confocal laser scanning microscopy. Eur. J. Cell Biol. 72:189-201.
  • Arregui, C.A.,, Balsamo, K.M., and Liliem, K. (1998). Impaired integrinmediated adhesion and signaling in fibroblasts expressing a dominantnegative mutant PTB1B. J. Cell Biol. 143:861-873.
  • Evans, C.E., and Trail, I.A., (1998). Fibroblast-like cells from tendons differ from skin fibroblasts in their ability to form three-dimensional structures in vitro. J. Hand Surg. 238:633-641.
  • Pierzchalska, M., Michalik, M., Stepien, E., and Korohoda, W. (1998). Changes in morphology of human skin fibroblasts induced by local anaesthetics: Role of actomyosin contraction. Eur. J. Pharmacol. 358:235-244.
  • Chang, J.-S., Iwashita, S., Lee, Y.H., Kim, M.K., Ryu, S.H., and Suh, P-G. (1999). Transformation of rat fibroblasts by phospholipase C-?1 overexpression is accomplished by tyrosine dephosphorylation of paxillin. FEBS Lett. 460:161-165.
  • Wells, A., Ware, M.F., Alien, F.D., and Lauffenberger, D.A., (1999). Shaping up for shifting out: PLC? signaling of morphology changes in EGF-stimulated fibroblast migration. Cell Motil. Cytoskel. 44:227-233.
  • Hay, E.D. (1982). Interaction of embryonic cell surface and cytoskeleton with extracellular matrix. Am. J. Anat. 165:5-12.
  • Tomasek, J.K., Haaksma, C.K., Eddy, R.K., and Vaughan, M.B. (1992). Fibroblast contraction occurs on release of tension in attached collagen lattices: Dependency on an organised actin cytoskeleton and serum. Anat. Rec. 232:359-368.
  • Tomasek, J K., and Hay, E.D. (1984). Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J. Cell Biol. 99:536-549.
  • Harris, A.K., Wild, P., and Stopak, D. (1980). Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science 208:177-179.
  • Harris, A.K., Stopak, D., and Wild, P. (1981). Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249-251.
  • Bellows, C.G., Melcher, A.H., and Aubin, J.E. (1981). Contraction and organisation of collagen gels by cells cultured from the periodontal ligament, gingiva and bone suggest functional differences between cell types. K. Cell Sei. 50:299-314.
  • Bellows, C.G., Melcher, A.H., and Aubin, J.E. (1982). Association between tension and orientation of periodontal ligament fibroblasts and exogenous collagen fibrils in collagen gels in vitro. J. Cell Sei. 58:125-138.
  • Harris, A.K., and Dmytryk, J.K. (1989). Cell traction: Implications for the mechanism of tooth eruption. In Biological Mechanisms of Tooth Eruption and Root Resorption, Z. Davidovitch(ed.), pp. 181-186 (EBSCO Media, Alabama).
  • Gabbiani, G., Ryan, G.B., and Majno, G. (1971). Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experimentia 27:549-550.
  • Hirschel, B.K., Gabbiani, G., Ryan, G.B., and Majno, G. (1971). Fibroblasts of granulation tissue: Imunofluorescence staining with antismooth muscle serum. Proc. Soc. Exp. Biol. Med. 138:466-469.
  • Gabbiani, G. (1979). The role of contractile proteins in wound healing and fibrocontractive diseases. Meth. Ach. Exp. Path. 9:187-206.
  • Moxham, B.K., and Berkovitz, B.K.B. (1995). Periodontal ligament and physiological tooth movement. In The Periodontal Ligament in Health and Disease, 2nd ed. B.K.B. Berkovitz, BJ. Moxham, and H.N. Newman (eds.), pp. 183-214 (Mosby-Wolfe, London).
  • Bard, J.B.L., and Hay, E.D. (1975). The behaviour of fibroblasts from the developing avian cornea: Their morphology and movement in situ and in vitro. J. Cell Biol. 67:400-418.
  • Roberts, W.E., and Chamberlain, J.G. (1978). Scanning electron microscopy of the cellular elements of rat periodontal ligament. Arch. Oral Biol. 23:587-589.
  • Beertsen, W., Everts, V., and Van Den Hooff, A. (1974). Fine structure of fibroblasts in the periodontal ligament of the rat incisor and their possible role in tooth eruption. Arch. Oral Biol. 19:1087-1098.
  • Shore, R.C., and Berkovitz, B.K.B. (1979). An ultrastructural study of periodontal ligament fibroblasts in relation to their possible role in tooth eruption and intracellular collagen degradation in the rat. Arch. Oral Biol. 24:155-164.
  • McNeilly, C.M., Banes, A.K., Benjamin, M., and Ralphs, K.R. ( 1996). Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J. Anat. 189:593-600.
  • Jester, K.V., Petroll, W.M., Barry, P.A.,, and Cavanagh, H.D. (1995). Temporal 3-dimensional cellular anatomy of corneal wound tissue. J. Cell Biol. 186:301-311.
  • Ratkay-Traub, I., Hopp, B., Bor, Z.S., Dux, L., Becker, D.L., and Krenacs, T. (2001). Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: A study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp. Eye Res. 73:291-302.
  • Ehrlich, H.P., Gabbiani, G., and Meda, A.P. (2000). Cell coupling modulates the contraction of fibroblast-populated collagen lattices. J. Cell Physiol. 184:86-92.
  • Suva, D.G. (1969). Further ultrastructural studies on the temporomandibular joint of the guinea pig. J. Ultrastruct. Res. 26:148-162.
  • Berkovitz, B.K.B., and Pacy, K. (1999). The ultrastructure of the intraarticular disc of the temporomandibular joint, with special reference to fibrocartilage. Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 41:2-13.
  • Berkovitz, B.K.B., and Pacy, K. (2000). Age changes in the cellsofthe intraarticular disc of the temporomandibular joint of the rat and marmoset. Arch. Oral Biol. 45:987-995.
  • Merrilees, M.K., and Flint, M.H. (1980). Ultrastnictural study of tension and pressure zones in rabbit flexor tendon. Amer. J. Anat. 157:87-106.
  • Osbom, K.W. (1985). The disc of the human temporomandibular joint: Design, function and failure. K. Oral Rehabil. 12:279-293.
  • Haskin, C.L., Milam, S.B., and Cameron, I.L. (1995). Pathogenesis of degenerative joint disease in the human temporomandibular joint. Crit. Rev. Oral Biol. Med. 6:248-277.
  • Berkovitz, B.K.B. (2000). Crimping of collagen in the intra-articular disc of the temporomandibular joint: A comparative study. J. Oral Rehabil. 27:608-613.
  • Becker, D.L., Evans, W.H., Green, C.R., and Wamer, A.E. (1995). Functional analysis of amino acid sequences in connexin 43 involved in intercellular communication through gap junctions. J. Cell Sci. 108:1455-1467.
  • Wright, C.S., Becker, D.L., Lin, S.K., Wamer, A.E., and Hardy, K. (2001). Stage-specific and differential expression of gap junctions in the mouse ovary: Connexin-specific roles in follicular regulation. J. Reprod. Fertil. 121:77-88.
  • Mills, O.K., Daniel, J.C., and Scalpino, R.P. (1988). Histologie features and in vitro proteoglycan synthesis in rabbit craniomandibular joint discs. Arch. Oral Biol. 33:195-202.
  • Nakano, T., and Scott, P.C. (1989). Proteoglycans of the articular disc of the bovine temporomandibular joint: 1. High molecular weight chondroitin sulphate proteoglycan. Matrix 9:277-283.
  • Nakano, T., and Scott, P.G. (1989). A quantitative chemical study of the glycosaminoglycans in the articular disc of the bovine temporomandibular joint. Arch. Oral Biol. 34:749-757.
  • Berkovitz, B.K.B. (2000). Collagen crimping in the intra-articular disc and articular surfaces of the human temporomandibular joint. Arch. Oral Biol. 45:749-756.
  • Simon, S., and Goodenough, D.A., (1988). Diverse functions of vertebrate gap junctions. Trends Cell Biol. 8:477-483.
  • Kelsell, D.P., Dunlop, K., and Hodgkins, M.B. (2001). Human diseases: Clues to cracking the connexin code? Trends Cell Biol. 11:2-6.
  • Scapino, R.P., Canham, P.B., Finlay, H.M., and Mills, O.K. (1996). The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch. Oral Biol. 41:1039-1052.
  • Nijweide, P.K., Burger, E.H., Kleine Nulend, K., and Van der Plas, A. (1996). The osteocyte. In Principles of Bone Biology, J.P. Bilezikian, L.G. Raisz, and G.A. Rodan (eds.), pp. 115-126 (Academic Press, London).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.