123
Views
42
CrossRef citations to date
0
Altmetric
Research Article

Subunit Structures in Hydroxyapatite Crystal Development in Enamel: Implications for Amelogenesis Imperfecta

, , , , , , & show all
Pages 65-71 | Published online: 06 Aug 2009

References

  • Glimcher, M.J., Friberg, U.A., and Levine, P.T. (1964). The isolation and amino acid composition of the enamel proteins of erupted bovine teeth. Biochem. J. 93:202–210.
  • Robinson, C., Lowe, N.R., and Weatherell, J.A. (1975). The amino acid composition, distribution and origin of “tuft” protein in human and bovine dental enamel. Arch. Oral Biol. 20:29–42.
  • Brookes, S.J., Robinson, C., Kirkham, J., and Bonass, W.A. (1995). Bio- chemistry and molecular biology of amelogenin proteins of developing enamel. Arch. Oral Biol. 40:1–14.
  • Fincham, A.G., and Moradian-Oldak, J. (1997). Recent advances in amel- ogenin biochemistry. Connect. Tiss. Res. 32:119–124.
  • Robinson, C., Kirkham, J., Brookes, S.J., and Shore, R.C. (1998). The developing enamel matrix: Nature and function. Eur. J. Oral Sci. 106(suppl):282–291.
  • Hiller, C.R., Robinson, C., and Weatherell, J.A. (1975). Variations in the composition of developing rat incisor enamel. Calcif. Tiss. Res. 18:1–12.
  • Robinson, C., Kirkham, J., and Hallsworth, A.S. (1988). Volume distribu- tion and concentration of protein mineral and water in developing dental enamel. Arch. Oral Biol. 33:159–162.
  • Termine, J.D., Belcourt, A.B., Christner, P.J., Conn, K.M., and Nylen,M.U. (1980). Properties of dissociatively extracted foetal tooth matrix proteins. I. Principle molecular species in developing bovine enamel. J. Biol. Chem. 255:9760–9768.
  • Robinson, C., Briggs, H.D., Kirkham, J., and Atkinson, P.J. (1983). Changes in the protein components of rat incisor enamel during tooth development. Arch. Oral Biol. 28:993–1000.
  • Robinson, C., and Kirkham, J. (1984). Is the rat incisor typical? INSERM 125:377–386.
  • Uchida, T., Fukae, M., Tanabe, T., Yamakoshi, Y., Satoda, T., Murakami, C., Takahashi, O., and Shimizu, M. (1995). Immunochemical and immuno- cytochemical study of a 15KDa non-amelogenin and related proteins in the porcine immature enamel: Proposal of a new group of enamel proteins ‘sheath proteins.’ Biomed. Res. 16:131–140.
  • Fukae, M., Tanabe, T., Murakami, C., Dohi, N., Uchida, T., and Shimizu, M. (1996). Primary structure of the porcine 89 KDa enamelin. Adv. Dent. Res. 10:111–118.
  • Bartlett, J.D., Simmer, J.P., Xue, J., Margolis, H., and Moreno, E.C. (1996). Molecular cloning and mRNA tissue distribution of a novel ma- trix metalloproteinase isolated from porcine enamel organ. Gene 183:123–128.
  • Bartlett, J.D., and Simmer, J. (1999). Proteinases in developing enamel. Criti. Rev. Oral Biol. Med. 10:425–441.
  • Brookes, S.J., Kirkham, J., Shore, R.C., Bonass, W.A., and Robinson,C. (1998). Enzyme compartmentalisation during biphasic enamel matrix processing. Connect. Tiss. Res. 39(1–3):393–403.
  • Robinson, C., Shore, R.C., Kirkham, J., and Stonehouse, N.J. (1990). Extracellular processing of enamel matrix proteins and the control of crys- tal growth. J. Biol. Buccale 18:355–361.
  • Simmer, J.P., Fukae, M., Tanabe, T., Yamakoshi, Y., Uchida, T., Xue, J., Margolis, H.C., Shimizu, M., DeHart, B.B., Hu, C.-C., and Bartlett, J.D. (1998). Purification, characterization, and cloning of enamel matrix serine protease 1. J. Dent. Res. 77(2):377–386.
  • Nylen, M.U., Eanes, E.D., and Omnell, K.A. (1963). Crystal growth in rat enamel. J. Cell Biol. 18:109–123.
  • Jessen, H. (1968). Elliptical tubules as unit structure of forming enamel matrix in the rat. Arch. Oral Biol. 13:351–352.
  • Smales, F.C. (1975). Structural subunit in prisms of immature rat enamel. Nature 258:772–774.
  • Robinson, C., Fuchs, P., and Weatherell, J.A. (1981). The appearance of developing rat incisor enamel using a freeze fracturing technique. J. Crystal Growth 53:160–165.
  • Kirkham, J., Brookes, S.J., Shore, R.C., Bonass, W.A., Smith, D.A.M., Wallwork, M.L., and Robinson, C. (1998). Atomic force microscopy stud- ies of crystal surface topology during enamel development. Connect. Tiss. Res. 38:91–100.
  • Kirkham, J., Brookes, S.J., Zhang, J., Wood, S.R., Shore, R.C., Smith, D.A., Wallwork, M.L., and Robinson, C. (2000). Effect of experimental fluorosis on the surface topography of developing enamel crystals. Caries Res. 35:50–56.
  • Fincham, A.G., and Simmer, J.P. (1997). Amelogenin proteins of dental enamel. In Dental Enamel, D.J. Chadwick, G. Cardew, and H.C. Slavkin (eds.) (CIBA Foundation Symposium) 205:118–139.
  • Posner, A.S., and Betts, F. (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res. 8:273–281.
  • Gower, L.B., and Odom, D.J. (2000). Deposition of calcium carbonate films by a polymer induced liquid-precursor (PILP) process. J. Cryst. Growth 210:719–734.
  • Tanabe, T. Aoba, T., Moreno, E.C., Fukae, M., and Shimizu, M. (1990). Properties of phosphorylated 32 kD nonamelogenin proteins isolated from porcine secretory enamel. Calcif. Tiss. Int. 46:205–215.
  • Kirkham, J., Zhang, J., Brookes, S.J., Shore, R.C., Ryu, O.H., Wood, S.R., Smith, D.A., Wallwork, M.L., and Robinson, C. (2000). Evidence for charge domains on developing enamel crystal surfaces. J. Dent. Res. 79(12):1943–1947.
  • Wallwork, M., Kirkham, J., Smith, D.A.M., Ryu, O., Wood, S.R., Brookes, S.J., and Robinson, C. (2001). Binding of matrix proteins to devel- oping enamel crystals: An atomic force microscopy study. Langmuir 17(8):2508–2513.
  • Wright, J.T., Duggal, M.S., Robinson, C., Kirkham, J., and Shore, R.C. (1993). The mineral composition and enamel ultrastructure of hypocalci- fied amelogenesis imperfecta. J. Craniofacial Gen. Devel. Biol. 13:117–126.
  • Wright, J.T., Robinson, C., and Shore, R.C. (1991). Characterization of the enamel ultrastructure and mineral content of smooth hypoplastic amelogenesis imperfecta. Oral Surg. Oral Med. Oral Pathol. 72:594–601.
  • Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., and Penn, R.L. (2001). Aggregation-based crystal growth and microstructure development in nat- ural iron oxyhydroxide biomineralisation products. Science 289:5480–5485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.