59
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Osteogenic Differentiation is Selectively Promoted by Morphogenetic Signals from Chondrocytes and Synergized by a Nutrient Rich Growth Environment

, , &
Pages 85-91 | Published online: 06 Aug 2009

References

  • Einhorn, T.A. (1998). The cell and molecular biology of fracture healing. Clin. Ortho. 355S:S7–S21.
  • Farnum, C.E., and Willsman, N.J. (1987). Morphologic stages of the terminal hypertrophic chondrocyte of growth plate cartilage. Anat. Res. 219:221–232.
  • Gerstenfeld, L.C., and Shapiro, F.D. (1996). Expression of bone specific genes by hypertrophic chondrocytes: Implications of a complex function- ality for the growth plate. J. Cell. Biochem. 62:1–9.
  • Hunziker, E.B., and Schenk, R.K. (1989). Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J. Physiol. 414:55–71.
  • Johnson, R.L., and Tabin, C.J. (1997). Molecular models for vertebrate limb development. Cell 90:979–990.
  • Grigoriadis, A.E., Heersche, J.N., and Aubin, J.E. (1988). Differentia- tion of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: Effect of dexamethasone. J. Cell Biol. 106:2139–2151.
  • Taylor, S.M., and Jones, P.A. (1979). Multiple new phenotypes induced in 10T 1/2 and 3T3 cells treated with 5-azacytodine. Cell 17:5771–5779.
  • Toma, C., Schaffer, J., Meazzini, M.C., Zurakowski, D., Nah, H.D., and Gerstenfeld, L.C. (1997). Developmental restriction of embryonic mes- enchymal stem cells as characterized by their in vitro potential for differ- entiation. J. Bone Miner. Res. 12:2024–2039.
  • Yamaguchi, A., and Kahn, A.J. (1991). Clonal osteogenic cell lines ex- press myogenic and adipocytic developmental potential. Calcif. Tiss. Int. 49:221–225.
  • Baylink, D.J., Finkelman, R.D., and Mohan, S. (1993). Growth factors to stimulate bone formation. J. Bone Miner Res. 8(supp. 2):S565–S572.
  • Enomoto-Iwamoto, M., Iwamoto, M., Mukudai, Y., Kawakami, Y., Nohno, T., Higuchi, Y., Takemoto, S., Ohuchi, H., Noji, S., and Kurisu, K. (1998).Bone morphogenetic protein signaling is required for maintenance of dif- ferentiated phenotype, control of proliferation, and hypertrophy in chon- drocytes. J. Cell Biol. 140:409–418.
  • Hogan, B.L.M. (1996). Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes Dev. 10:1580–1594.
  • Karp, S.J., Schipani, E., St-Jacques, B., Hunzelman, J., Kronenberg, H., and McMahon, A.P. (2000). Indian hedgehog coordinates endochon- dral bone growth and morphogenesis via parathyroid hormone related- protein-dependent and-independent pathways. Development 127:543–548.
  • Murtaugh, L.C., Chyung, J.H., and Lassar, A.B. (1999). Sonic hedgehog promotes somotic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev. 2:225–237.
  • Nakamura, T., Aikawa, T., Enomoto-Iwamoto, M., Iwamoto, M., Higuchi, Y., Pacifici, M., Kinto, N., Yamaguchi, A., Noji, S., Kurisu, K., and Matsuya, T. (1997). Induction of osteogenic differentiation by hedgehog proteins. Biochem. Biophys. Res. Comm. 237:465–469.
  • Pathi, S., Rutenberg, J.B., Johnson, R.L., and Vortkamp, A. (1999). Inter- action of IHH and BMP/noggin signaling during cartilage differentiation. Dev. Biol. 209:239–253.
  • Reddi, A.H., and Cunningham, N.S. (1993). Initiation and promotion of bone differentiation by bone morphogenetic proteins. J. Bone Miner Res. 8(supp. 2):S499–S502.
  • Shiang, R., Thompson, L.M., Zhu, Y.Z., Church, D.M., Fielder, T.J., Bocian, S.T., Winokur, S.T., and Wasmuth, J.J. (1994). Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342.
  • Naski, M.C., and Ornitz, D.M. (1998). FGF signaling in skeletal development. Frontiers BioSci. 3:781–794.
  • St-Jacques, B., Hammerschmidt, M., and McMahon, A.P. (1999). Indian hedgehog signaling regulates proliferation and differentiation of chon- drocytes and is essential for bone formation. Genes Dev. 13:2072–2086.
  • Wozney, J.M. (1989). Bone morphogenetic proteins. Progress in Growth Factor Research 1:267–280.
  • Kon, T., Cho, T.J., Aizawa, T., Yamazaki, M., Nooh, N., Graves, D., Gerstenfeld, L.C., and Einhorn, T.A. (2001). Expression of osteoprote- gerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner. Res. 16:1004–1014.
  • Gerstenfeld, L.C., and Landis, W.J. (1991). Gene expression and extra- cellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. J. Cell Biol. 112:501–513.
  • Gerstenfeld, L.C., Chipman, S.D., Glowacki, J., and Lian, J.B. (1987). Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev. Biol. 122:49–60.
  • Yang, R., and Gerstenfeld, L.C. (1997). Structural analysis and character- ization of tissue and hormonal responsive expression of the avian bone sialoprotein gene. J. Cell. Biochem. 64:77–93.
  • Kostenuik, P.J., Halloran, B.P., Morey-Halton, E.R., and Bikle, D.D. (1997). Skeletal unloading inhibits in vitro proliferation and differentiation of rat osteoprogenitor cells. Am. J. Physiol. 273:E1133–E1139.
  • Thomas, P. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5206.
  • Constantinides, P.G., Taylor, S.M., and Jones, P.A. (1978). Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev. Biol. 66:57–71.
  • Gerstenfeld, L.C., Cruceta, J., Shea, C.M., Sampath, K., Barnes, G.L., and Einhorn, T.A. (2002). Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells. J. Bone Miner. Res. 17:221–230.
  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A., and Karsenty, G. (1997). Osf2/Cbfa1, a transcriptional activator of osteoblast differentiation. Cell 89:747–754.
  • Banerjee, C., McCabe, L.R., Choi, J.Y., Hiebert, S.W., Stein, J.L., Stein, G.S., and Lian, J.B. (1997). Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J. Cell Biochem. 66:1–8.
  • Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., Komori, T., and Nakatsuka, M. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Cell Biochem. 274:6972–6978.
  • Asahina, I., Sampath, T.K., Nishimura, I., and Hauschka, P.V. (1993). Human osteogenic\protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J. Cell Biol. 123:921–933.
  • Onishi, T., Ishidou, Y., Nagamine, T., Yone, K., Imamura, T., Kato, M., Sampath, T.K., Dijke, P.T., and Sakou, T. (1998). Distinct and overlap- ping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 22:605–612.
  • Bostrom, M.P.G. (1998). Expression of bone morphogenetic proteins in fracture healing. Clin. Orthop. 355(suppl):s116–s123.
  • Barnes, G.L., Kostenuik, P.J., Gerstenfeld, L.C., and Einhorn, T.A. (1999). Growth factor regulation of fracture repair. J. Bone Miner. Res. 14:1805–1815.
  • Cho, T.-J., Gerstenfeld, L.C., and Einhorn, T.A. (2002). Differential temporal expression of members of the TGF-β superfamily during murine fracture healing. J. Bone Miner. Res. 17:513–520.
  • Fuchs, E., and Segre, J. (2000). Stem cells: A new lease on life. Cell 100:143–155.
  • Gurney, J.G., Severson, R.K., Davis, S., and Robison, L.L. (1995). Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer 75:2186–2195.
  • Thomas, D.M., Carty, S.A., Piscopo, D.M., Lee, J.S., Wang, W.F., Forrester, W.C., and Hinds, P.W. (2001). The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell 2:303–316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.