31
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Steroid Hormone Action in Musculoskeletal Cells Involves Membrane Receptor and Nuclear Receptor Mechanisms

, , &
Pages 130-135 | Published online: 06 Aug 2009

References

  • Sasano, H., Uzuki, M., Sawai, T., Nagura, H., Matsunaga, G., Kashimoto, O., and Harada, N. (1997). Aromatase in human bone tissue. J. Bone Miner. Res. 12:1416–1423.
  • Shozu, M., and Simpson, E.R. (1998). Aromatase expression of human osteoblast-like cells. Mol. Cell Endocrinol. 139:117–129.
  • Purohit, A., Flanagan, A.M., and Reed, M.J. (1992). Estrogen synthesis by osteoblast cell lines. Endocrinology 131:2027–2029.
  • Howard, G.A., Turner, R.T., Sherrard, D.J., and Baylink, D.J. (1981). Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25- dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J. Biol. Chem. 256:7738–7740.
  • Armbrecht, H.J., Hodam, T.L., Boltz, M.A., Partridge, N.C., Brown, A.J., and Kumar, V.B. (1998). Induction of the vitamin D 24-hydroxylase (CYP24) by 1,25-dihydroxyvitamin D3 is regulated by parathyroid hor- mone in UMR106 osteoblastic cells. Endocrinology 139:3375–3381.
  • Schwartz, Z., Brooks, B.P., Swain, L.D., Del Toro, F., Norman, A.W., and Boyan, B.D. (1992). Production of 1,25-dihydroxyvitamin D3 and 24,25- dihydroxyvitamin D3 by growth zone and resting zone chondrocytes is dependent on cell maturation and is regulated by hormones and growth factors. Endocrinology 130:2495–2504.
  • Pedrozo, H.A., Boyan, B.D., Mazock, J., Dean, D.D., Gomez, R., and Schwartz, Z. (1999). TGF-β1 regulates 25-hydroxyvitamin D3 1α- and 24-hydroxylase activity in cultured growth plate chondrocytes in a maturation-dependent manner. Calcif. Tiss. Int. 64:50–56.
  • Schwartz, Z., Pedrozo, H.A., Sylvia, V.L., Gomez, R., Dean, D.D., and Boyan, B.D. (2001). 1α,25-(OH)2D3 regulates 25-hydroxyvitamin D3 24R-hydroxylase activity in growth zone costochondral growth plate chon- drocytes via protein kinase C. Calcif Tiss. Int. 69:365–372.
  • Sylvia, V.L., Gay, I., Hardin, R., Dean, D.D., Boyan, B.D., and Schwartz, Z. (2002). Rat costochondral chondrocytes produce 17β-estradiol and reg- ulate its production by 1α, 25(OH)2D3. Bone 30:57–63.
  • Seo, E.G., Schwartz, Z., Dean, D.D., Norman, A.W., and Boyan, B.D. (1996). Preferential accumulation in vivo of 24R,25-dihydroxyvitamin D3 in growth plate cartilage of rats. Endocrine 5:147–155.
  • St.-Arnaud, R. (1999). Targeted inactivation of vitamin D hydroxylases inmice. Bone 25:127–129.
  • St.-Arnaud, R., Arabian, A., Travers, R., Barletta, F., Raval-Pandya, M., Chapin, K., Depovere, J., Mathieu, C., Christakos, S., Demay, M.B., and Glorieux, F.H. (2000). Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25- dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology 141:2658–2666.
  • Nemere, I., and Farach-Carson, M.C. (1998). Membrane receptors for steroid hormones: A case for specific cell surface binding sites for vitamin D metabolites and estrogens. Biochem. Biophys. Res. Comm. 248:443–449.
  • Civitelli, R., Kim, Y.S., Gunsten, S.L., Fujimori, A., Huskey, M., Avioli, L.V., and Hruska, K.A. (1990). Nongenomic activation of the cal- cium message system by vitamin D metabolites in osteoblast-like cells. Endocrinology 127:2253–2262.
  • Farach-Carson, M.C., Sergeev, I.N., and Norman, A.W. (1991). Nonge- nomic actions of 1,25-dihydroxyvitamin D3 in rat osteosarcoma cells: Structure-function studies using ligand analogs. Endocrinology 129:1876–1884.
  • Tanaka, Y., Bush, K.K., Eguchi, T., Ikekawa, N., Taguchi, T., Kobayashi, Y., and Higgins, P.J. (1990). Effects of 1,25-dihydroxyvitamin D3 and its analogs on butyrate-induced differentiation of HT-29 human colonic carcinoma cells on the reversal of the differentiated phenotype. Arch. Biochem. Biophys. 276:415–423.
  • Liu, R., Li, W., Karin, N.J., Bergh, J.J., Adler-Storthz, K., and Farach- Carson, M.C. (2000). Ribozyme ablation demonstrates that the car- diac subtype of the voltage-sensitive calcium channel is the molecular transducer of 1,25-dihydroxyvitamin D3-stimulated calcium influx in os- teoblastic cells. J. Biol. Chem. 275:8711–8718.
  • Benten, W.P., Lieberherr, M., Giese, G., and Wunderlich, F. (1998). Estra- diol binding to cell surface raises cytosolic free calcium in T cells. FEBS Lett. 422:349–353.
  • Kim, Y.S., MacDonald, P.N., Dedhar, S., and Hruska, K.A. (1996). Association of 1α,25-dihydroxyvitamin D3-occupied vitamin D recep- tors with cellular membrane acceptance sites. Endocrinology 137:3649–3658.
  • Baran, D.T., Quail, J.M., Ray, R., Leszyk, J., and Honeyman, T. (2000). Annexin II is the membrane receptor that mediates the rapid actions of 1α,25-dihydroxyvitamin D3. J. Cell Biochem. 78:34–46.
  • Boyan, B.D., Bonewald, L.F., Sylvia, V.L., Nemere, I., Larsson, D., Norman, A.W., Rosser, J., Dean, D.D., and Schwartz, Z. (2002). Evidence for distinct membrane receptors for 1α, s25-(OH)2D3 and 24R,25-(OH)2D3 in osteoblasts. Steroids 67:235–246.
  • Nemere, I., Ray, R., and Jia, Z. (1996). Further characterization of the putative basal-lateral membrane receptor for 1,25(OH)2D3. J. Bone Miner. Res. 11:S312.
  • Nemere, I., Ray, R., and Jia, Z. (1997). Further characterization of the basal-lateral membrane receptor for 1,25(OH)2D3 in chick intestine. In Vitamin D: Chemistry, Biology and Clinical Applications of the Steroid Hormone, A.W. Norman, R. Bouillon, and M. Thomasset (eds.), pp. 387–388 (University of California-Riverside, Printing and Repro- graphic Services, Riverside).
  • Pedrozo, H.A., Schwartz, Z., Rimes, S., Sylvia, V.L., Nemere, I., Posner, G.H., Dean, D.D., and Boyan, B.D. (1999). Physiological importance of the 1,25-(OH)2D3 membrane receptor and evidence for a membrane re- ceptor specific for 24,25-(OH)2D3. J. Bone Miner. Res. 14:856–867.
  • Capiati, D.A., Vazquez, G., Tellez-Inon, M.T., and Boland, R.L. (2000). Role of protein kinase C in 1,25-dihydroxyvitamin D3 modulation of in- tracellular calcium during development of skeletal muscle cells in culture. J. Cell Biochem. 77:200–212.
  • Norman, A.W. (2000). 1α,25(OH)2D3-mediated rapid and genomic re- sponses in human leukemic NB4 cells: Evidence for involvement of crosstalk from rapid responses to genomic effects. In Vitamin D Endocrine System, A.W. Norman, R. Bouillon, and M. Thomasset (eds.), pp. 691–698 (University of California-Riverside, CA).
  • Simboli-Campbell, M., Gagnon, A., Franks, D.J., and Welsh, J. (1994). 1,25-dihydroxyvitamin D3 translocates protein kinase C beta to nucleus and enhances plasma membrane association of protein kinase C alpha in renal epithelial cells. J. Biol. Chem. 269:3257–3264.
  • Boyan, B.D., Dean, D.D., Sylvia, V.L., and Schwartz, Z. (1997). Cartilage and vitamin D: Genomic and nongenomic regulation by 1,25-(OH)2D3 and 24,25-(OH)2D3. In Vitamin D, D. Feldman, F.H. Glorieux, and J.W. Pike (eds.), pp. 395–421 (Academic Press, San Diego, CA).
  • Wali, R., Kong, J., Demay, M.B., Brasitus, T.A., Bissonnette, M., and Li, Y.C. (2001). The vitamin D receptor is not required for the rapid activation of PKC and rise in intracellular calcium induced by 1,25-dihydroxyvitamin D3 in mouse osteoblasts. J. Bone Miner. Res. 16(suppl 1):S229.
  • Sylvia, V.L., Schwartz, Z., Ellis, E.B., Helm, S.H., Gomez, R., Dean,D.D., and Boyan, B.D. (1996). Nongenomic regulation of protein kinase C isoforms by the vitamin D metabolites 1α,25-(OH)2D3 and 24R,25- (OH)2D3. J. Cell Physiol. 167:380–393.
  • Swain, L.D., Schwartz, Z., Caulfield, K., Brooks, B.P., and Boyan, B.D. (1993). Nongenomic regulation of chondrocyte membrane fluidity by 1,25-(OH)2D3 and 24,25-(OH)2D3 is dependent on cell maturation. Bone 14:609–617.
  • Rasmussen, H., Matsumoto, T., Fontaine, O., and Goodman, D.B. (1982). Role of changes in membrane lipid structure in the action of 1,25- dihydroxyvitamin D3. Fed Proc. 41:72–77.
  • Lieberherr, M., Grosse, B., Kachkache, M., and Balsan, S. (1993). Cellsignaling and estrogens in female rat osteoblasts: A possible involvement of unconventional nonnuclear receptors. J. Bone Miner. Res. 8:1365–1376.
  • Razandi, M., Pedram, A., Greene, G.L., and Levin, E.R. (1999). Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: Studies of ERα and ERβ expressed in Chinese hamster ovary cells. Mol. Endocrinol. 13:307–319.
  • Levin, E.R. (2001). Cell localization, physiology, and nongenomic actions of estrogen receptors. J. Applied Physiol. 91:1860–1867.
  • Fiorelli, G., Gori, F., Frediani, U., Franceschelli, F., Tanini, A., Tosti-Guerra, C., Benvenuti, S., Gennari, L., Becherini, L., and Brandi,M.L. (1996). Membrane binding sites and non-genomic effects of estro- gen in cultured human pre-osteoclastic cells. J. Steroid Biochem. Mol. Biol. 59:233–240.
  • Endoh, H., Sasaki, H., Maruyama, K., Takeyama, K., Waga, I., Shimizu, T., Kato, S., and Kawashima, H. (1997). Rapid activation of MAP kinase by estrogen in the bone cell line. Biochem. Biophys. Res. Comm. 235:99–102.
  • Sylvia, V.L., Hughes, T., Dean, D.D., Boyan, B.D., and Schwartz, Z. (1998). 17β-Estradiol regulation of protein kinase C activity in chon- drocytes is sex-dependent and involves nongenomic mechanisms. J. Cell Physiol. 176:435–444.
  • Sylvia, V.L., Boyan, B.D., Dean, D.D., and Schwartz, Z. (2000). The membrane effects of 17β-estradiol on chondrocyte phenotypic expression are mediated by activation of protein kinase C through phospholipase C and G-proteins. J. Steroid Biochem. Mol. Biol. 73:211–224.
  • Sylvia, V.L., Walton, J., Lopez, D., Dean, D.D., Boyan, B.D., and Schwartz, Z. (2001). 17β-estradiol-BSA conjugates and 17β-estradiol regulate growth plate chondrocytes by common membrane associated mechanisms involving PKC dependent and independent signal transduc- tion. J. Cell Biochem. 81:413–429.
  • Weigel, N.L. (1996). Steroid hormone receptors and their regulation by phosphorylation. Biochem. J. 319:657–667.
  • Boyan, B.D., Sylvia, V.L., Dean, D.D., Del Toro, F., and Schwartz, Z. (2002). Differential regulation of growth plate chondrocytes by 1α,25- (OH)2D3 and 24R,25-(OH)2D3 involves cell maturation specific mem- brane receptor activated phospholipid metabolism. Crit. Rev. Oral Biol. Med. 13:143–154.
  • Bonewald, L.F., Schwartz, Z., Swain, L.D., and Boyan, B.D. (1992). Stimulation of matrix vesicle enzyme activity in osteoblast-like cells by 1,25(OH)2D3 and transforming growth factor beta (TGF beta). Bone Miner. 17:139–144.
  • Corvol, M., Ulmann, A., and Garabedian, M. (1980). Specific nuclear uptake of 24,25-dihydroxycholecalciferol, a vitamin D3 metabolite bio- logically active in cartilage. FEBS Lett. 116:273–276.
  • Kousteni, S., Bellido, T., Plotkin, L.I., O’Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenel-lenbogen, B.S., Roberson, P.K., Weinstein, R.S., Jilka, R.L., and Manola-gas, S.C. (2001). Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity. Cell 104:719–730.
  • Sylvia, V.L., Schwartz, Z., Holmes, S.C., Dean, D.D., and Boyan, B.D. (1997). 24,25-(OH)2D3 regulation of matrix vesicle protein kinase C oc- curs both during biosynthesis and in the extracellular matrix. Calcif. Tiss. Int. 61:313–321.
  • Dean, D.D., Schwartz, Z., Muniz, O.E., Gomez, R., Swain, L.D., Howell, D.S., and Boyan, B.D. (1992). Matrix vesicles are enriched in met- alloproteinases that degrade proteoglycans. Calcif. Tiss. Int. 50:342–349.
  • Boskey, A.L., Boyan, B.D., and Schwartz, Z. (1997). Matrix vesicles pro- mote mineralization in a gelatin gel. Calcif. Tiss. Int. 60:309–315.
  • Maeda, S., Dean, D.D., Schwartz, Z., and Boyan, B.D. (2001). Activation of latent transforming growth factor-β1 by stromelysin-1 in extracts of growth plate chondrocyte-derived matrix vesicles. J. Bone Miner. Res. 16:1281–1290.
  • Boyan, B.D., Schwartz, Z., Park-Snyder, S., Dean, D.D., Yang, F., Twardzik, D., and Bonewald, L.F. (1994). Latent transforming growth factor-β is produced by chondrocytes and activated by extracellular ma- trix vesicles upon exposure to 1,25-(OH)2D3. J. Biol. Chem. 269:28374–28381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.