12
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Perlecan-Stimulated Nodules Undergo Chondrogenic Maturation in Response to rhBMP-2 Treatment In Vitro

, &
Pages 196-201 | Published online: 06 Aug 2009

References

  • Thorogood, P., and Hinchcliffe, J. (1975). An analysis of the condensa- tion process during chondrogenesis in the embryonic chick hind limb. J. Embryol. Exp. Morphol. 33:581–606.
  • Ede, D.A. (1983). Cellular condensations and chondrogenesis. In: Carti- lage, Vol. 2, B.K. Hall (ed.), pp. 143–185 (New York: Academic Press).
  • Schmid, T.M., and Conrad, H.E. (1982). A unique low molecular weight collagen secreted by cultured chick embryo chondrocytes. J. Biol. Chem. 257:12444–12450.
  • Capasso, O., Gionti, E., Pontarelli, G., Ambesi-Impiombato, F.S., Nitsch, L., Tajana, G., and Cancedda, R. (1982). The culture of chick embryo chondrocytes and the control of their differentiated functions “ in vitro ” I. Characterization of the chondrocyte specific phenotypes. Exp. Cell Res. 142:197–206.
  • Gibson, G.J., Schor, S.L., and Grant, M.E. (1982). Effects of matrix macro- molecules on chondrocyte gene expression: Synthesis of a low molecular weight collagen species of cell cultures with collagen gels. J. Cell. Biol. 93:767–774.
  • Iozzo, R.V., Cohen, I.R., Gra¨ssel, S., and Murdoch, A.D. (1994). The biology of perlecan: The multifaceted heparan sulfate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302:625–639.
  • Schulze, B., Sasaki, T., Costell, M., Mann, K., and Timpl, R. (1996). Structural and cell-adhesive properties of three recombinant fragments derived from perlecan domain III. Matrix Biol. 15:349–357.
  • Costell, M., Sasaki, T., Mann, K., Yamada, Y., and Timpl, R. (1996). Struc- tural characterization of recombinant domain II of the basement membrane proteoglycan perlecan. FEBS Lett. 396:127–131.
  • Brown, J.C., Sasaki, T., Go¨hring, W., Yamada, Y., and Timpl, R. (1997). The C-terminal domain V of perlecan promotes β 1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur. J. Biochem. 250:39–46.
  • Sasaki, T., Costell, M., Mann, K., and Timpl, R. (1998). Inhibition of glycosaminoglycan modification of perlecan domain I by site-directed mutagenesis changes protease sensitivity and laminin-1 binding. FEBS Lett. 435:169–172.
  • SundarRaj, N., Fite, D., Ledbetter, S., Chakravarti, S., and Hassell, J. R. (1995). Perlecan is a component of cartilage and promotes chondrocyte attachment. J. Cell Sci. 108:2663–2672.
  • Kan, M., Wang, F., To, B., Gabriel, J.L., and McKeehan, W.L. (1996). Divalent cations and heparin/heparan sulfate cooperate to control assembly and activity of the fibroblast growth factor receptor complex. J. Biol. Chem. 271:26143–26148.
  • Ruppert, R., Hoffman, E., and Sebald, W. (1996). Human bone mor- phogenic protein 2 contains a heparin-binding site which modifies its biological activity. Eur. J. Biochem. 237:295–302.
  • Blanquaert, F., Barritault, D., and Caruelle, J.P. (1999). Effects of heparin- like polymers associated with growth factors on osteoblast proliferation and phenotypic expression. J. Biomed. Mater. Res. 44:63–72.
  • Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J.R., and Yamada, Y. (1999). Perlecan is essential for cartilage and cephalic de- velopment. Nat. Genet. 23:354–358.
  • Costell, M., Gustafsson, E., Aszodi, A., Morgelin, M., Bloch, W., Hunziker, E., Addicks, K., Timpl, R., and Fassler, R. (1999). Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147:1109–1122.
  • French, M., Smith, S.E., Akanbi, K., Sanford, T., Hecht, J., Farach-Carson, M.C., and Carson, D.D. (1999). Expression of the heparan sulfate proteo- glycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J. Cell Biol. 145:1103–1111.
  • Bernard, A., Hogue, D., Cole, W., Sanford, T., Snuggs, M., Montufar- Solis, D., Duke, J., Carson, D., Scott, A., Van Winkle, W., and Hecht, J. (2000). Cytoskeletal abnormalities in chondrocytes with EXT1 and EXT2 mutations. J. Bone Miner. Res. 15:442–450.
  • Atkinson, B.L., Ryan, M.E., Benedict, J.J., Huffer, W.E., and Gutierrez- Hartmann, A. (1996). Elucidation of homeoprotein Cart-1 function dur- ing in vitro chondrogenesis of C3H10T1/2 micromass cultures. Ann. N.Y. Acad. Sci. 785:206–208.
  • Denker, A.E., Nicoll, S.B., and Tuan, R.S. (1995). Formation of cartilage- like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-β1. Differentiation 59:25–34.
  • Katagiri, T., Yamaguchi, A., Ikeda, T., Yoshiki, S., Wozney, J.M., Rosen, V., Wang, E.A., Tanaka, H., Omura, S., and Suda, T. (1990). The non- osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differ- entiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem. Biophys. Res. Commun. 172:295–299.
  • Gomes, R.R., French, M.M., Timpl, R., Ho¨o¨k, M., Czymmek, K., Farach- Carson, M.C., and Carson, D.D. (2002). Chondrogenic activity of the heparan sulfate proteoglycan, perlecan, maps to the N-terminal domain I. J. Bone Miner. Res. 17:48–55.
  • Wang, E., Israel, D., Kelly, S., and Luxenberg. (1990). Bone morphogenic protein 2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 9:57–71.
  • Hall, B., and Miyake, T. (1992). The membraneous skeleton: The role for cell condensations in vertebrate skeletogenesis. Anat. Ebryol. 186:107–124.
  • Hall, B., and Miyake, T. (1995). Divide, accumulate, differentiate: Celk1 condensation in skeletal development revisited. Int. J. Dev. Biol. 39:881–893.
  • Hall, B., and Miyake, T. (2000). All for one and one for all: Condensations and the initation of skeletal development. BioEssays. 22:138–147.
  • Launay, C., Formentoux, V., Thery, C., Shi., D., and Boucaur, J. (1994). Comparative analysis of the tissue distribution of 3 fibroblast growth fac- tor messenger RNAs during amphibian morpohogenesis. Differentiation 58:101–111.
  • Langille, R. (1994). Chondrgenic differentiation in culture of embryonic rat mesenchyme. Microscopy Res. Tech. 28:455–469.
  • Kosher, R., Kulyk, W., and Gay, S. (1986). Collagen gene expression during limb cartilage differentiation. J. Cell Biol. 102:1151–1156.
  • Schmid, T., and Linsenmayer, T. (1985). Immunohistochemical localiza- tion of short chain cartilage collagen (type X) in avain tissues. J. Cell Biol. 100:598–605.
  • Gibson, G., Bearman, M., and Flint, M. (1986). The immunoperoxidase localization of type X collagen in chick cartilage and lung. Coll. Relat. Res. 6:163–184.
  • Leboy, P., Shapiro, I., Uschmann, B., Oshima, O., and Lin, D. (1988). Gene expression in mineralizing chick epiphyseal cartilage. J. Biol Chem. 263:8515–8520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.