24
Views
14
CrossRef citations to date
0
Altmetric
Research Article

In Vivo and In Vitro Phosphorylation Regions of Bone Sialoprotein

Pages 223-229 | Published online: 06 Aug 2009

References

  • Glimcher, M.J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phys. Trans. Roy. Soc. London B 304:479–508.
  • Hunter, G.K., and Goldberg, H.A. (1993). Nucleation of hydroxyapatite by bone sialoprotein. Proc. Natl. Acad. Sci. USA 90:8562–8565.
  • Harris, N.L., Rattray, K.R., Tye, C.E., Underhill, T.M., Somerman, M.J., D’Errico, J.A., Chambers, A.F., Hunter, G.K., and Goldberg, H.A. (2000). Functional analysis of bone sialoprotein: Identification of the hydroxyapatite-nucleating and cell-binding domains by recombinant pep- tide expression and site-directed mutagenesis. Bone 27(6):795–802.
  • Oldberg, A., Franzen, A., Heinegard, D., Pierchbacher, M., and Ruoslahti, E. (1988). Identification of bone sialoprotein receptor in osteosarcoma cells. J. Biol. Chem. 263:19433–19436.
  • Helfrich, M.H., Nesbitt, S.A., Dorey, E.L., and Horton, M.A. (1992). Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide containing proteins including the bone sialoproteins and fibronectin, via a β 3 integrins. J. Bone Miner. Res. 7:335–343.
  • Chambers, T.J., Fuller, K., Darby, J.A., Pringle, J.A., and Horton, M.A. (1986). Monoclonal antibodies against osteoclasts inhibit bone resorption in vitro. J. Bone Miner. 1:127–135.
  • Horton, M.A., Taylor, M.L., Arnett, T.K., and Helfrich, M.H. (1991). Arg- Gly-Asp (RGD) peptides and antivitronectin receptor antibody 23 CG inhibits cell spreading and dentine resorption by osteoclasts. Expt. Cell Res. 195:368–375.
  • Mizuno, M., Imai, T., Fujisawa, R., Tani, H., and Kuboki, Y. (2000). Bone sialoprotein (BSP) is a crucial factor for the expression of osteoblastic phenotypes of bone marrow cells cultured on type I collagen matrix. Calcif. Tiss. Int. 66:388–396.
  • Wang, J., Kennedy, J., Kasser, J., Glimcher, M.J., and Salih, E. (1999). Novel bioactive property of purified native bone sialoprotein in bone repair of calvarial defect. Orthop. Trans. 22:951–952.
  • Goldberg, M., Six, N., Decup, F., Buch, D., Soheilli-Majd, E., Lasfarques, J.-J., Salih, E., and Stanislawwski, L. (2001). Application of bioactive molecules in pulp capping situations. Adv. Dent. Res. 15:91–95.
  • Decup, F., Six, N., Palmeir, D., Buch, D., Lasfargues, J.-J., Salih, E., and Goldberg, M. (2000). Bone sialoprotein-induced reparative dentinogenesis in the pulp of a rat’s molar. Clin. Oral Invest. 4:110–119.
  • Glimcher, M.J. (1989). Mechanism of calcification: Role of collagen fibrils and collagen phosphoprotein complexes in vitro and in vivo. Anat. Rec. 224:139–153.
  • Ek-Rylander, B., Flores, M., Wendel, M., Heinegard, D., and Anderson, G. (1994). Dephosphorylation of osteopontin and bone sialoprotein by osteo- clast tartrate-resistant acid phosphates: Modulation of osteoclast adhesion in vitro. J. Biol. Chem. 269:14853–14856.
  • Wuttke, M., Muller, S., Nitsvhe, D.P., Paulsson, M., Hunich, F.G., and Maurer, P. (2001). Structural characterization of human recombinant and bone-derived bone sialoprotein. J. Biol. Chem. 276:36839–36848.
  • Salih, E., Ashkar, S., Gerstenfeld, L.C., and Glimcher, M.J. (1996). Protein kinases of cultured osteoblasts: Selectivity for extracellular matrix proteins of bone and their catalytic competence for osteopontin. J. Bone Miner. Res. 11:1461–1473.
  • Salih, E., Zhou, H.-Y., and Glimcher, M.J. (1996). Phosphorylation of purified bovine bone sialoprotein and osteopontin by protein kinases. J. Biol. Chem. 271:16897–16905.
  • Salih, E., Ashkar, S., Gerstenfeld, L.C., and Glimcher, M.J. (1997). Iden- tification of the phosphorylated sites of metabolically <sup>32</sup>P-labeled osteo- pontin from cultured chicken osteoblsts. J. Biol. Chem. 272:13966–13973.
  • Wang, J., Glimcher, M.J., Mah, J., Zhou, H.-Y., and Salih, E. (1998). Expression of bone microsomal casein kinase II, bone sialoprotein and osteopontin during the repair of calvarial defects. Bone 22:621–628.
  • Salih, E., Wang, J., Mah, J., and Fluckiger, R. (2002). Natural variance of the state of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochem. J. in press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.