26
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Novel Osteoinductive Biomimetic Scaffolds Stimulate Human Osteoprogenitor Activity--Implications for Skeletal Repair

, , , , , , & show all
Pages 312-317 | Published online: 06 Aug 2009

References

  • Oreffo, R.O., and Triffitt, J.T. (1999). Future potentials for us- ing osteogenic stem cells and biomaterials in orthopedics. Bone 25: 5S–9S.
  • Bruder, S.P., Jaiswal, N., Ricalton, N.S., Mosca, J.D., Kraus, K.H., and Kadiyala, S. (1998). Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin. Orthop. S247–S256.
  • Burwell, R.G. (1994). History of bone grafting and bone substitutes with special reference to osteogenic induction. In Bone Grafts, Derivatives and Substitutes, M.R. Urist and R.G. Burwell (eds.), pp. 3–102. (Oxford, Butterworth-Heinemann Ltd).
  • Chaput, C., Selmani, A., and Rivard, C.H. (1996). Artificial scaffolding materials for tissue extracellular matrix repair. Curr. Opin. Orth. 7:62–68.
  • Crane, G.M., Ishaug, S.L., and Mikos, A.G. (1995). Bone tissue engineer- ing. Nat. Med. 1:1322–1324.
  • Hollinger, J. (1993). Strategies for regenerating bone of the craniofacial complex. Bone 14:575–580.
  • Langer, R., and Vacanti, J.P. (1993). Tissue Engineering. Science 260:920–926.
  • Putnam, A.J., and Mooney, D.J. (1996). Tissue engineering using synthetic extracellular matrices. Nat. Med. 2:824–826.
  • Aubin, J.E., and Liu, F. (1996). The osteoblast lineage. In Principles of Bone Biology, J. Bilizekian, L. Raisz, and G. Rodan (eds.), pp. 39–50. (San Diego, Academic Press).
  • Friedenstein, A.J. (1995). Marrow stromal fibroblasts. Calcif. Tiss. Int. 56:S17.
  • Friedenstein, A.J., Chailakhyan, R.K., and Gerasimov, U.V. (1987). Bone marrow osteogenic stem cells. In vitro cultivation and transplantation in diffusion chambers. Cell Tiss. Kinet. 20:263–272.
  • Goshima, J., Goldberg, V.M., and Caplan, A.I. (1991). The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin. Orthop. 262: 298–311.
  • Gundle, R., Joyner, C.J., and Triffitt, J.T. (1993). Human bone tissue formation in diffusion chamber culture in vivo by bone- derived cells and marrow stromal fibroblastic cells. Bone 16:597–601.
  • Owen, M. (1988). Marrow stromal stem cells. J. Cell Sci. 10 (Suppl.): 63–76.
  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.
  • Horisaka, Y., Okamoto, Y., Matsumoto, N., Yoshimura, Y., Kawada, J., Yamashita, K., and Tomomichi, T. (1991). Subperiosteal implantation of bone morphogenetic protein adsorbed to hydroxyapatite. Clin. Orthop. 268:303–312.
  • Ishaug, S.L., Crane, G.M., Miller, M.J., Yasko, A.W., Yaszemski, M.J., and Mikos, A.G. (1997). Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36:17–28.
  • Doll, B.A., Towle, H.J., Hollinger, J.O., Reddi, A.H., and Mellonig, J.T. (1990). The osteogenic potential of two composite graft systems using osteogenin. J. Periodontol. 61:745–750.
  • Ohgushi, H., Goldberg, V.M., and Caplan, A.I. (1989). Heterotopic os- teogenesis in porous ceramics induced by marrow cells. J. Orthop. Res. 7:568–578.
  • Yasko, A.W., Lane, J.M., Fellinger, E.J., Rosen, V., Wozney, J.M., and Wang, E.A. (1992). The healing of segmental bone defects, induced by re- combinant human bone morphogenetic protein (rhbmp-2): A radiographic, histological and biochemical study in rats. J. Bone Joint Surg. 74a:659–670.
  • Freed, L.E., Vunjak-Novakovic, G., Biron, R.J., Eagles, D.B., Lesnoy, D.C., Barlow, S.K., and Langer, R. (1994). Biodegradable polymer scaffolds for tissue engineering. Bio/Tech. 12:689–693.
  • Patel, N., Padera, R., Sanders, G.H., Cannizzaro, S.M., Davies, M.C., Langer, R., Roberts, C.J., Tendler, S.J., Williams, P.M., and Shakesheff, K.M. (1998). Spatially controlled cell engineering on biodegradable poly- mer surfaces. FASEB J. 12:1447–1454.
  • Peter, S.J., Miller, M.J., Yasko, A.W., Yaszemski, M.J., and Mikos, A.G. (1998). Polymer concepts in tissue engineering. J. Biomed. Mater. Res. 37:422–427.
  • Quirk, R.A., Davies, M.C., Tendler, S.J.B., and Shakesheff, K.M. (2000). Surface engineering of poly(lactic acid) by entrapment of modifying species. Macromolecules 33:158–260.
  • Wozney J.M., and Rosen, V. (1998). Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin. Orthop. 346:26–37.
  • Urist, M.R. (1965). Bone formation by autoinduction. Science 150:893–899.
  • Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M., and Wang, E.A. (1988). Novel regulators of bone formation: Molecular clones and activities. Science 242:1528–1534.
  • Daluiski, A., Engstrand, T., Bahamonde, M.E., Gamer, L.W., Agius, E., Stevenson, S.L., Cox, K., Rosen, V., and Lyons, K.M. (2001). Bone mor- phogenetic protein-3 is a negative regulator of bone density. Nat. Genet. 27(1):84–88.
  • Anderson, H.C., Gurley, D.J., Hsu, H.H.T., Aguilera, X.M., Davis, L.S., and Moylan, P.E. (1999). Secretion of a bone-inducing agent (BIA) by cultured SAOS-2 human osteosarcoma cells. J. Musculoskel. Res. 3: 39–49.
  • Anderson, H.C., Hsu, H.H.T., Raval, P., Hunt, T.R., Schwappach, J.R., Morris, D.C., and Schneider, D.J. (1995). The mechanism of bone induc- tion and bone healing by human osteosarcoma cell extracts. Clin. Orth. Rel. Res. 313:129–134.
  • Anderson, H.C., Reynolds, P.R., Hsu, H.H.T., Missana, L., Masuhara, K., Moylan, P.E., and Roach, H.I. (2002). Selective synthesis of bone morphogenetic proteins-1,3,4 and bone sialoprotein may be important for Osteoinduction by Saos-2 cells. J. Bone Min. Metab. 20:73–82.
  • Imai, S., Kaksonen, M., Raulo, E., Kinnunen, T., Fages, C., Meng, X., Lakso, M., and Raulo, H. (1998). Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth- associated molecule (HB-GAM). J. Cell Biol. 143:1113–1128.
  • Masuda, H., Tsujimura, A., Yoshioka, M., Arai, Y., Kuboki, Y., Mukai, T., Nakamura, T., Tsuji, H., Nakagawa, M., and Hashimoto-Gotoh, T. (1997). Bone mass loss due to estrogen deficiency is compensated in transgenic mice overexpressing human osteoblast stimulating factor-1. Biochem. Biophys. Res. Comm. 238(2):528–533.
  • Oreffo, R.O., Virdi, A.S., and Triffitt, J.T. (2000). Retroviral marking of human bone marrow fibroblasts—in vitro expansion and homing to skele- tal sites in vivo. J. Cell Physiol. 186:201–209.
  • Howdle, S.M., Watson, M.S., Whitaker, M.J., Popov, V.K., Davies, M.C., Mandel, F.S., Wang, J.D., and Shakesheff, K.M. (2001). Supercritical fluid mixing: Preparation of thermally sensitive polymer composites containing bioactive materials. Chem. Comm. 1:109–110.
  • Yang, X.B., Roach, H.I., Clarke, N.M.P., Howdle, S.M., Quirk, R., Shakesheff, K.M., and Oreffo, R.O.C. (2001). Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after sur- face modification. Bone 29:523–531.
  • de Groot, K. (1998). Carriers that concentrate native bone morphogenetic protein in vivo. Tiss. Eng. 4:337–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.