479
Views
165
CrossRef citations to date
0
Altmetric
Research Article

A New Paradigm for Biomineral Formation: Mineralization via an Amorphous Liquid-Phase Precursor

, , &
Pages 326-334 | Published online: 06 Aug 2009

References

  • Addadi, L., Moradiam, J., Shay, E., Maroudas, N.G., and Weiner, S. (1987). A chemical model for the cooperation of sulfates and carboxylates in cal- cite crystal nucleation: Relevance to biomineralization. Proc. Natl. Acad. Sci. USA 84:2732–2736.
  • Addadi, L., and Weiner, S. (1992). Control and design principles in bio- logical mineralization. Angew. Chem. Int. Ed. Engl. 31:153–169.
  • Mann, S. (1983). Mineralization in biological systems. Struct. Bond. 54:125–174.
  • Mann, S. (1989). Crystallochemical strategies in biomineralization. InBiomineralization-Chemical and Biochemical Perspectives, S. Mann,J. Webb, and R.J.P. Williams (eds.), pp. 35–62. (VCH Publishers, New York).
  • Addadi, L., Berkovitch-Yellin, Z., Weissbuch, I., Mil J.V., Shimon, L.J.W., Lahav, M., and Leiserowitz, L. (1985). Growth and dissolution of organic crystals with ”tailor-made inhibitors: Implications in stereo- chemistry and materials science. Angew. Chem. Int. Ed. Engl. 24:466–485.
  • Greenfield, E.M., Wilson, D.C., and Crenshaw, M.A. (1984). Ionotropic nucleation of calcium carbonate by molluscan matrix. Am. Zool. 24:925–932.
  • Gower, L.B., and Odom, D.J. (2000). Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Crystal Growth 210(4):719–734.
  • Gower, L.A. (1997). The Influence of Polyaspartate Additive on the Growth and Morphology of Calcium Carbonate Crystals, Polymer Science & Engineering (University of Massachusetts at Amherst).
  • Gower, L.B. (in preparation). Relevance of a polymer-induced liquid- precursor (PILP) process to biomineralization.
  • Aizenberg, J., Lambert, G., Addadi, L., and Weiner, S. (1996). Stabiliza- tion of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv. Mater. 8(3):222–226.
  • Arnott, H.J. (1976). Calcification in higher plants. In The Mechanism of Mineralization in the Invertebrates and Plants. N. Watabe and Wilbur, K.M. (eds.), pp. 55–78. (University of South Caroline Press, Columbia).
  • Levi-Kalisman, Y., Raz, S., Weiner, S., Addadi, L., and Sagi, I. (2000). X-ray absorption spectroscopy studies on the structure of a bigenic “amor-phous” calcium carbonate phase. J. Chem. Soc. Dalt. 21:3977–3982.
  • Wang, R.Z., Addadi, L., and Weiner, S. (1997). Design strategies of seaurchin teeth: Structure, composition and micromechanical relations to function. Phil. Trans. R. Soc. Lond. B 352:469–480.
  • Carter, J.G. (1990). Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends., vol. 1. (Van Nostrand Reinhold, New York).
  • Beniash, E., Aizenberg, J., Addadi, L., and Weiner, S. (1997). Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. Lond. B 264:461–465.
  • Bonucci, E. (1992). Role of collagen fibrils in calcification. In Calcifi- cation of Biological Systems. E. Bonucci (ed.), pp. 19–39. (CRC Press, Boca Raton).
  • Cuisinier, F.J.G., and Vogel, J.C. (1992). Structure of initial crystals formed during human amelogenesis. J. Crystal Growth 116:314–318.
  • Landis, W.J., and Navarro, M. (1983). Correlated physicochemical and age-changes in embryonic bovine enamel. Calcif. Tis. Int. 35: 48.
  • Bonucci, E. (1992). Calcification in Biological Systems. (CRC Press, Boca Raton), pp. 406.
  • Lowenstam, H.A., and Weiner, S. (1989). On Biomineralization. (Oxford University Press, New York).
  • Weiner, S., and Addadi, L. (1991). Acidic macromolecules of mineralized tissues: The controllers of crystal formation. Trends Biochem. Science 16(7):252–256.
  • Mann, S., Webb, J., and Williams, R.J.P. (1989). Biomineralization– Chemical and Biochemical Perspectives. (VCH Publishers, New York).
  • Okazaki, K., Dillaman, R.M., and Wilbur, K.M. (1981). Crystalline axes of the spine and test of the sea urchin Strongylocentrous purpuratus: Determination by crystal etching and decoration. Biol. Bull. 161:402–415.
  • Gower, L.A., and Tirrell, D.A. (1998). Calcium carbonate films and helices grown in solutions of poly(aspartate). J. Crystal Growth 191(1–2):153–160.
  • Du, C., Cui, F.Z., Zhu, X.D., and Groot, K.D. (1999). Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater. Res. 44(4):407–415.
  • Iijima, M., Iijima, K., Moriwaki, Y., and Kuboki, Y. (1994). Oriented growth of octacalcium phosphate crystals on type I collagen fibrils under physiological conditions. Crystal Growth 140:91–99.
  • Iijima, M., Moriwaki, Y., and Kuboki, Y. (1994). In vitro crystal growth of octacalcium phosphate on type I collagen fiber. Crystal Growth 137:553–560.
  • Bigi, A., Gandolfi, M., Roveri, N., and Valdre, G. (1997). In vitro calci- fied tendon collagen: An atomic force and scanning electron microscopy investigation. Biomaterials 18(9):657–665.
  • Doi, Y., Horiguchi, T., Moriwaki, Y., Kitago, H., Kajimoto, T., and Iwayama, Y. (1996). Formation of apatite-collagen complexes. Biomed. Mat. Res. 31:43–49.
  • Bradt, J.-H., Mertig, M., Teresiak, A., and Pompe, W. (1999). Biomimetic mineralization of collagen by combined fibril assembly and calcium phos- phate formation. Chem. Mater. 11:2694–2701.
  • Mythili, J., Sastry, T.P., and Subramanian, M. (2000). Preparation and characterization of a new bioinorganic composite: Collagen and hydrox- yapatite. Biotechnol. Appl. Biochem. 32:155–159.
  • Traub, W., Arad, T., and Weiner, S. (1992). Origin of mineral crystal growth in collagen fibrils. Matrix 12:251–255.
  • Calvert, P., and Rieke, P. (1996). Biomimetic mineralization in and on polymers. Chem. Mater. 8:1715–1727.
  • Weiner, S., and Traub, W. (1991). Organization of crystals in bone. In Mechanisms and Phylogeny of Mineralization in Biological Systems, vol. Biomineralization ’90. S. Suga and H. Nakahara (eds.), pp. 247–253. (Springer-Verlag, New York).
  • Landis, W.J., Song, M.J., Leith, A., McEwen, L., and McEwen, B.F. (1993). Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron micro- scopic tomography and graphic image reconstruction. Struct. Biol. 110: 39–54.
  • Landis, W.J., Moradian-Oldak, J., and Weiner, S. (1991). Topographic imaging of mineral and collagen in the calcifying turkey tendon. Connect. Tiss. Res. 25:181–196.
  • Hodge, A.J., and Petruska, J.A. (1963). Recent studies with the electron microscope on ordered aggreagates of the tropocollagen molecule. In: Aspects of Protein Structure. G.N. Ramanchandran (ed.), pp. 289–300. (Academic Press, London).
  • Katz, E.P., Wachtel, E., Yamauichi, M., and Mechanic, G.L. (1989). The structure of mineralized collagen fibrils. Connect. Tiss. Res. 21:49–159.
  • Traub, W., Arad T., and Weiner, S. (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. USA. 86:9822–9826.
  • Sasaki, T. (1990). Cell Biology of Tooth Enamel Formation (Karger, New York).
  • Fincham, A.G., Moradian-Oldak, J., and Simpson, J.P. (1999). The struc- tural biology of developing dental enamel matrix. J. Struct. Biol. 126:270–299.
  • Fincham, A.G., Moradian-Oldak, J., and Slavkin, H.C. (1995). Evidence for amelogenin “nanospheres” as functional components of secretory- stage enamel matrix. J. Struct. Biol. 115:50–59.
  • LeGeros, R.Z. (1991). Calcium Phosphate in Oral Biology and Medicine. (Karger, New York).
  • Addadi, L., and Weiner, S. (1985). Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. USA 82:4110–4114.
  • Jones, D.E.H., and Walter, U. (1998). The silicate garden reaction in mi- crogravity: A fluid interfacial instability. J. Colloid Interface Sci. 203:286–293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.