1,253
Views
104
CrossRef citations to date
0
Altmetric
REVIEW

Dermatopontin, a Novel Player in the Biology of the Extracellular Matrix

&
Pages 177-189 | Received 14 Feb 2006, Accepted 05 Jun 2006, Published online: 06 Aug 2009

REFERENCES

  • Ricard-Blum S., Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol. Biol. 2005; 53: 430–442, [CSA]
  • Wickstrom S. A., Alitalo K., Keski-Oja J. Endostatin signaling and regulation of endothelial cell-matrix interactions. Adv. Cancer Res. 2005; 94: 197–229, [CSA]
  • Iozzo R. V. Matrix proteoglycans: from molecular design to cellular function. Ann. Rev. Biochem. 1998; 67: 609–652, [CSA]
  • Iozzo R. V., Moscatello D. K., McQuillan D. J., Eichstetter I. Decorin is a biological ligand for the epidermal growth factor receptor. J. Biol. Chem. 1999; 274: 4489–4492, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tran K. T., Lamb P., Deng J.-S. Matrikines and matricryptins: implications for cutaneous cancers and skin repair. J. Dermatol. Sci. 2005; 40: 11–20, [INFOTRIEVE], [CSA], [CROSSREF]
  • Neame P. J., Choi H. U., Rosenberg L. C. The isolation and primary structure of a 22-kDa extracellular matrix protein from bovine skin. J. Biol. Chem. 1989; 264: 5474–5479, [INFOTRIEVE], [CSA]
  • Choi H. U., Johnson T. L., Pal S., Tang L.-H., Rosenberg L., Neame P. J. Characterization of the dermatan sulfate proteoglycans, DS-PG1 and DS-PG II, from bovine articular cartilage and skin isolated by octyl-sepharose chromatography. J. Biol. Chem. 1989; 264: 2876–2884, [INFOTRIEVE], [CSA]
  • Cronshaw A., MacBeath J., Shackleton D., Collins J., Fothergill-Gilmore L., Hulmes D. TRAMP (tyrosine rich acidic matrix protein), a protein that co-purifies with lysyl oxidase from porcine skin-identification of TRAMP as the dermatan sulphate proteoglycan-associated 22K extracellular matrix protein. Matrix 1993; 13: 255–266, [INFOTRIEVE], [CSA]
  • Superti-Furga A., Rocchi M., Schäfer B. W., Gitzelmann R. Complementary DNA sequence and chromosomal mapping of a human proteoglycan-binding cell-adhesion protein (dermatopontin). Genomics 1993; 17: 463–467, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tzen C. Y., Huang Y. W. Cloning of murine early quiescence-1 gene: the murine counterpart of dermatopontin gene can induce and be induced by cell quiescence. Exp. Cell Res. 2004; 294: 30–38, [CSA]
  • Takemoto S., Murakami T., Kusachi S., Iwabu A., Hirohata S., Nakamura K., Sezaki S., Hayashi J., Suezawa C., Ninomiya Y., Tsuji T. Increased expression of dermatopontin mRNA in the infarct zone of experimentally induced myocardial infarction in rats: comparison with decorin and type I collagen. Basic Res. Cardiol. 2002; 97: 461–468, [INFOTRIEVE], [CSA], [CROSSREF]
  • Schütze J., Skorokhod A., Müller I. M., Müller W. E.G. Molecular evolution of the metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium. J. Mol. Evol. 2001; 53: 402–415, [CSA]
  • Fujii N., Minetti C. A. S., Nakhasi H. L., Chen S. W., Barbehenn E., Nunes P. H., Nguyen N. Y. Isolation, cDNA cloning, and characterization of an 18-kDa hemagglutinin and amebocyte aggregation factor from Limulus polyphemus. J. Biol. Chem. 1992; 267: 22452–22459, [INFOTRIEVE], [CSA]
  • Marxen J. C., Nimtz M., Becker W., Mann K. The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim. Biophys. Acta 2003; 1650: 92–98, [INFOTRIEVE], [CSA]
  • Sarashina I., Yamaguchi H., Haga T., Iijima M., Chiba S., Endo K. Molecular evolution and functionally important structures of molluscan dermatopontin: implications for the origins of molluscan shell matrix proteins. J. Mol. Evol. 2006; 62: 307–318, [CSA]
  • Bouchut A., Roger E., Coustau C., Gourbal B., Mitta G. Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: potential involvement of adhesion genes. Int. J. Parasitol. 2006; 36: 175–184, [CSA]
  • Okamoto O., Suzuki Y., Kimura S., Shinkai H. Extracellular matrix 22-kDa protein interacts with decorin core protein and is expressed in cutaneous fibrosis. J. Biochem. 1996; 119: 106–114, [CSA]
  • Forbes E., Cronshaw A., MacBeath J., Hulmes D. Tyrosine-rich acidic matrix protein (TRAMP) is a tyrosine-sulphated and widely distributed protein of the extracellular matrix. FEBS Lett. 1994; 351: 433–436, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jukkola A., Risteli J., Niemela O., Risteli L. Incorporation of sulphate into type III procollagen by cultured human fibroblasts. Eur. J. Biochem. 1986; 154: 219–224, [INFOTRIEVE], [CSA], [CROSSREF]
  • Fessler L. I., Brosh S., Chapin S., Fessler J. H. Tyrosine sulfation in precursors of collagen V. J. Biol. Chem. 1986; 261: 5034–5040, [CSA]
  • Antonsson P., Heinegård D., Oldberg A. Post-translational modifications of fibromodulin. J. Biol. Chem. 1991; 266: 16859–16861, [INFOTRIEVE], [CSA]
  • Leyte A., van Schijndel H. B., Niehrs C., Huttner W. B., Verbeet M. P., Mertens K., van Mourik J. A. Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor. J. Biol. Chem. 1991; 266: 740–746, [CSA]
  • Huang S. C., Yu D. H., Wank S. A., Mantey S., Gardner J. D., Jensen R. T. Importance of sulfation of gastrin or cholecystokinin (CCK) on affinity for gastrin and CCK receptors. Peptides 1989; 10: 785–789, [INFOTRIEVE], [CSA], [CROSSREF]
  • Janes S. M., Palcic M. M., Scaman C. H., Smith A. J., Brown D. E., Doodey D. M., Mure M., Klinman J. P. Identification of topaquinone and its consensus sequence in copper amine oxidases. Biochemistry 1992; 31: 12147–12154, [INFOTRIEVE], [CSA], [CROSSREF]
  • Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 1990; 248: 981–987, [INFOTRIEVE], [CSA]
  • Klinman J. P. The multi-functional topa-quinone copper amine oxydases. Biochim. Biophys. Acta 2003; 1647: 131–137, [INFOTRIEVE], [CSA]
  • Hautanen A., Gailit J., Mann D. M., Ruoslahti E. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Biol. Chem. 1989; 264: 1437–1442, [INFOTRIEVE], [CSA]
  • Pierschbacher M. D., Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 1987; 262: 17294–17298, [CSA]
  • Dedhar S., Ruoslahti E., Pierschbacher M. D. A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. J. Cell Biol. 1987; 104: 585–593, [CSA]
  • Bhatia P. K., Mukhopadhyay A. Protein glycosylation: implications for in vivo functions and therapeutic applications. Adv. Biochem. Eng. Biotechnol. 1999; 64: 155–201, [INFOTRIEVE], [CSA]
  • Okamoto O., Fujiwara S., Abe M., Sato Y. Dermatopontin interacts with TGF-β1 and enhances its biological activity. Biochem. J. 1999; 337: 537–541, [INFOTRIEVE], [CSA], [CROSSREF]
  • Catherino W. H., Leppert P. C., Stenmark M. H., Payson M., Potlog-Nahari C., Nieman L. K., Segars J. H. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromos. Cancer 2004; 40: 204–217, [INFOTRIEVE], [CSA], [CROSSREF]
  • Abe R., Donnelly S. C., Peng T., Bucala R., Metz C. N. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 2001; 166: 7556–7562, [CSA]
  • Quan T. E., Cowper S., Wu S. P., Bockenstedt L. K., Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 2004; 36: 598–606, [CSA]
  • Mori L., Bellini A., Stacey M. A., Schmidt M., Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp. Cell Res. 2005; 304: 81–90, [CSA]
  • Lewandowska K., Choi H. U., Rosenberg L. C., Sasse J., Neame P. J., Culp L. A. Extracellular matrix adhesion-promoting activities of a dermatan sulfate proteoglycan-associated protein (22K) from bovine fetal skin. J. Cell Sci. 1991; 99: 657–668, [CSA]
  • Wight T. N., Heinegård D. K., Hascall V. C. “Proteoglycans-structure and function”. Cell Biology of Extracellular Matrix2nd, E. D. Hay. Plenum Press, New York 1991; 45–78
  • Lewandowska K., Choi H. U., Rosenberg L. C., Zardi L., Culp L. A. Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan-binding domain. J. Cell Biol. 1987; 105: 1443–1454, [INFOTRIEVE], [CSA], [CROSSREF]
  • Winnemöller M., Schmidt G., Kresse H. Influence of decorin on fibroblast adhesion to fibronectin. Eur. J. Cell Biol. 1991; 54: 10–17, [CSA]
  • Winnemöller M., Schon P., Vischer P., Kresse H. Interactions between thrombospondin and the small proteoglycan decorin: interference with cell attachment. Eur. J. Cell Biol. 1992; 59: 47–55, [CSA]
  • Yamaguchi Y., Mann D. M., Ruoslahti E. Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 1990; 346: 281–284, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hausser H., Gröning A., Hasilik A., Schönherr E., Kresse H. Selective inactivity of TGF-β/decorin complexes. FEBS Lett. 1994; 353: 243–245, [INFOTRIEVE], [CSA], [CROSSREF]
  • Isaka Y., Bress D. K., Ikegaya K., Kaneda Y., Imai E., Noble N. A., Border W. A. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nature Med. 1996; 2: 418–423, [CSA]
  • MacBeath J., Shackleton D., Hulmes D. Tyrosine-rich acidic matrix protein (TRAMP) accelerates collagen fibril formation. J. Biol. Chem. 1993; 268: 19826–19832, [CSA]
  • Vogel K., Trotter J. The effect of proteoglycans on the morphology of collagen fibrils in vitro. Collagen Rel. Res. 1987; 7: 105–114, [CSA]
  • Rada J. A., Cornuet P. K., Hassell J. R. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp. Eye Res. 1993; 56: 635–648, [CSA]
  • Hedbom E., Heinegård D. Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J. Biol. Chem. 1993; 268: 27307–27312, [CSA]
  • Fleischmajer R., Perlish J. S., Burgeson R. E., Shaikh-Bahai F., Timpl R. Type I and type III collagen interactions during fibrillogenesis. Ann. N.Y. Acad. Sci. 1990; 580: 161–175, [CSA]
  • Birk D. E., Fitch J. M., Babiarz J. P., Doane K. J., Linsenmayer T. F. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J. Cell Sci. 1990; 95: 649–657, [INFOTRIEVE], [CSA]
  • Takeda U., Utani A., Adachi E., Koseki H., Taniguchi M., Matsumoto T., Ohashi T., Sato M., Shinkai H. Targeted disruption of dermatopontin causes abnormal collagen fibrillogenesis. J. Invest. Dermatol. 2002; 119: 678–683, [INFOTRIEVE], [CSA], [CROSSREF]
  • Danielson K. G., Baribault H., Holmes D. F., Graham H., Kadler K. E., Iozzo R. V. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 1997; 136: 729–743, [INFOTRIEVE], [CSA], [CROSSREF]
  • Chakravarti S., Magnuson T., Lass J. H., Jepsen K. J., LaMantia C., Carroll H. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J. Cell Biol. 1998; 141: 1277–1286, [INFOTRIEVE], [CSA], [CROSSREF]
  • Svensson L., Aszodi A., Reinholt F. P., Fassler R., Heinegård D., Oldberg A. Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 1999; 274: 9636–9647, [CSA]
  • Kyriakides T. R., Zhu Y. H., Smith L. T., Bain S. D., Yang Z., Lin M. T., Danielson K. G., Iozzo R. V., LaMarca M., McKinney C. E., Ginns E. I., Bornstein P. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J. Cell Biol. 1998; 140: 419–430, [INFOTRIEVE], [CSA], [CROSSREF]
  • Vogel K. G. “Glycosaminoglycans and proteoglycans”. Extracellular Matrix Assembly and Structure, P. D. Yurchenco, D. E. Birk, R. P. Mecham. Academic Press, New York 1994; 243–279
  • Vogel K., Paulsson M., Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 1984; 223: 587–597, [INFOTRIEVE], [CSA]
  • Brown D., Vogel K. Characteristics of the in vitro interaction of a small proteoglycan (PG II) of bovine tendon with type I collagen. Matrix 1989; 9: 468–478, [INFOTRIEVE], [CSA]
  • Hattori S., Adachi E., Ebihara T., Shirai T., Someki I., Irie S. Alkali-treated collagen retained the triple helical conformation and the ligand activity for the cell adhesion via α2β1 integrin. J. Biochem. 1999; 125: 676–684, [INFOTRIEVE], [CSA]
  • Fishbein M. C., Maclean D., Maroko P. R. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am. J. Pathol. 1978; 90: 57–70, [INFOTRIEVE], [CSA]
  • Scott P. G., Dodd C. M., Tredget E. E., Ghahary A., Rahemtulla F. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-β in human post-burn hypertrophic and mature scars. Histopathology 1995; 26: 423–431, [INFOTRIEVE], [CSA]
  • Hunzalmann N., Anders S., Sollberg S., Schönherr E., Krieg T. Co-ordinate induction of collagen type I and biglycan expression in keloids. Brit. J. Dermatol. 1996; 135: 394–399, [CSA]
  • Kuroda K., Okamoto O., Shinkai H. Dermatopontin expression is decreased in hypertrophic scar and systemic sclerosis skin fibroblasts and is regulated by transforming growth factor-β1, interleukin-4, and matrix collagen. J. Invest. Dermatol. 1999; 706: 706–710, [CSA], [CROSSREF]
  • Salmon-Ehr V., Serpier H., Nawrocki B., Gilley P., Clavel C., Kalis B., Birembaut P., Maquart F. X. Expression of interleukin-4 in scleroderma skin specimens and scleroderma fibroblast cultures. Potential role in fibrosis. Arch. Dermatol. 1996; 132: 802–806, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tsibris J. C. M., Segars J., Coppola D., Mane S., Wilbanks G. D., O’Brien W. F., Spellacy W. N. Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil. Steril. 2002; 78: 114–121, [CSA]
  • Tallheden T., Karlsson C., Brunner A., van der Lee J., Hagg R., Tommasini R., Lindahl A. Gene expression during redifferentiation of human articular chondrocytes. Osteoarth. Cartil. 2004; 12: 525–535, [CSA], [CROSSREF]
  • Sekiya I., Vuoristo J. T., Larson B. L., Prockop D. J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc. Natl. Acad. Sci. USA 2002; 99: 4397–4402, [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.