456
Views
62
CrossRef citations to date
0
Altmetric
MINIREVIEW

Matrix Biology of Abdominal Aortic Aneurysms in Diabetes: Mechanisms Underlying the Negative Association

, , &
Pages 125-131 | Received 13 Nov 2006, Accepted 03 Mar 2007, Published online: 06 Aug 2009

REFERENCES

  • Lederle F. A., Johnson G. R., Wilson S. E., Chute E. P., Litooy F. N., Bandyk D., Krupski W. C., Barone G. W., Acher C. W., Ballard D. J. Prevalence and associations of abdominal aortic aneurysm detected through screening. Ann. Int. Med. 1997; 126: 441–449
  • Blanchard J. F. Epidemiology of abdominal aortic aneurysms. Epidemiol. Rev. 1999; 21: 207–221
  • Jamrozik K., Norman P. E., Spencer C. A., Parsons R. W., Tuohy R., Lawrence-Brown M. M., Dickinson J. A. Screening for abdominal aortic aneurysms: lessons from a population-based study. Med. J. Aust. 2000; 173: 345–350
  • Shteinberg D., Halak M., Shapiro S., Kinarty A., Sobol E., Lahat N., Karmeli R. Abdominal aortic aneurysm and aortic occlusive disaese: a comparison of risk factors and inflammatory response. Eur. J. Vasc. Endovas. Surg. 2000; 20: 462–465
  • Blanchard J., Armenian H., Friesen P. Risk factors for abdominal aortic aneurysm: results of a case-control study. Am. J. Epidemiol. 2000; 151: 575–583
  • Marian A. On genetics, inflammation, and abdominal aortic aneurysm. Circulation 2001; 103: 2222–2224
  • Eriksson P., Jormsjo-Pettersson S., Brady A., Deguchi H., Hamsten A., Powell J. Genotype-phenotype relationships in an investigation of the role of proteases in abdominal aortic aneurysm expansion. Br. J. Surg. 2005; 92: 1372–1276
  • LaMorte W. W., Scott T. E., Menzoian J. O. Racial differences in the incidence of femoral bypass and abdominal aortic aneurysmectomy in Massachusetts: relationship to cardiovascular risk factors. J. Vasc. Surg. 1995; 21: 422–431
  • Mattes E., Davis T. M.E., Yang D., Ridley D., Lund H., Norman P. E. Prevalence of abdominal aortic aneurysms in men with diabetes. M.J.A. 1997; 166: 630–634
  • Brady A. R., Thompson S. G., Fowkes G. R., Greenhalgh R. M., Powell J. T. Abdominal aortic aneurysm expansion. Risk factors and time intervals for surveillance. Circulation 2004; 110: 16–21
  • Norman P. E., Spencer C. A., Lawrence-Brown M. M., Jamrozik K. C-reactive protein levels and the expansion of screen-detected abdominal aortic aneurysms in men. Circulation 2004; 110: 862–866
  • Le M. T.Q., Jamrozik K., Davis T. M.E., Norman P. Negative association between infra-renal aortic diameter and glycaemia: the health in men study. Eur. J. Vasc. Endovasc. Surg. 2007; 33: 592–598
  • Sakalihasan N., Heyeres A., Nusgens B. V., Limet R., Lapiere C. M. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur. J. Vasc. Surg. 1993; 7: 633–637
  • Freestone T., Turner R. J., Coady A., Higman D. J., Greenhalgh R. M., Powell J. T. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1145–1151
  • Carrell T. W.G., Burnand K. G., Wells G. M.A., Clements J. M., Smith A. Stromelysin-1 (matrix metalloproteinase-3). and tissue inhibitor of metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurysms. Circulation 2002; 105: 477–482
  • Curci J. A., Liao S., Huffman M. D., Shapiro S. D., Thompson R. W. Expression and localisation of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J. Clin. Invest. 1998; 102: 1900–1910
  • Thompson R. W., Holmes D. R., Mertens R. A., Liao S., Botney M. D., Mecham R. P., Welgus H. G., Parks W. C. Production and localisation of 92-kilodalton gelatinase in abdominal aortic aneurysms. J. Clin. Invest. 1995; 96: 318–326
  • Sakalihasan N., Delvenne P., Nusgens B. V., Limet R., Lapiere C. M. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 1996; 24: 127–133
  • Goodall S., Crowther M., Hemingway D. M., Bell P. R., Thompson M. M. Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation. 2001; 104: 304–309
  • McMillan W. D., Tamarina N. T., Cipollone M., Jonson D. A., Parker M. A., Pearce W. H. Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation 1997; 96: 2228–2232
  • Pyo R., Lee J. K., Shipley J. M., Curci J. A., Mao D., Ziporin S. J., Ennis T. L., et al. Targeted gene disruption of metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 2000; 105: 1641–1649
  • Longo G. M., Xiong W., Greiner T. C., Zhao Y., Fiotti N., Baxter B. T. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 2002; 110: 625–632
  • Pearce W. H., Shively V. P. Abdominal aortic aneurysm as a complex multifactorial disease. Interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs. Ann. NY Acad. Sci. 2006; 1085: 117–132
  • van Vlijmen-van Keulen C. J., Vahl A. C., Hennekam R. C.M., Rauwerda J. A., Pals G. Genetic linkage of candidate genes in families with abdominal aortic aneurysms?. Eur. J. Vasc. Endovas. Surg. 2003; 26: 205–210
  • Jones G. T., Phillips L. V., Harris E. L., Rossaak J. I., van Rij A. M. A functional matrix metalloproteinase 9 polymorphism (C-1562T). is associated with abdominal aortic aneurysm. J. Vasc. Surg. 2003; 38: 1363–1367
  • Jormsjo S., Ye S., Moritz J., Walter D. H., Dimmeler S., Zeiher A. M., Henney A., Hamsten A., Eriksson P. Allele-specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circ. Res. 2000; 86: 998–1003
  • Mauer S. Structural-functional correlations of diabetic nephropathy. Kidney Int. 1994; 45: 612–622
  • Jones S. C., Saunders H. J., Pollock C. A. High glucose increases growth and collagen synthesis in cultured human tubulointerstitial cells. Diabetic Med. 1999; 16: 932–938
  • Lam S., Verhagen N. A.M., Strutz F., van der Pijl J. W., Daha M. R., van Kooten C. Glucose-induced fibronectin and collagen type III expression in renal fibroblasts can occur independent of TGF-β1. Kidney Int. 2003; 63: 878–888
  • Asbun J., Manso A. M., Villareal F. J. Profibrotic influence of high glucose concentration on cardiac fibroblast functions: effects of losartan and vitamin E. Am. J. Physiol. (Endocinol. Met.) 2005; 288: H227–H234
  • Singh R., Alavi N., Singh A. K., Leehey D. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes 1999; 48: 2066–2073
  • Murphy M., Godson C., Cannon S., Kato S., Mackenzie H. S., Martin F., Brady H. R. Suppression subtraction hybridization identiefies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J. Biol. Chem. 1999; 274: 5830–5834
  • Twigg S. M., Chen M. M., Joly A. H., Chakrapani S. D., Tsubaki J., Kinm H.-S., Oh Y., Rosenfeld R. G. Advanced blycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein-2). in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocinology 2001; 142: 1760–1769
  • McLennan S., Wang X., Moreno V., Yue D., Twigg S. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology 2004; 145: 5646–5655
  • Death A., Fisher E., McGrath K., Yue D. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis. 2003; 168: 263–269
  • Uemura S., Matsushita H., Li W., Glassford A. J., Asagami T., Lee K.-H., Harrison D. G., Tsao P. S. Diabetes mellitus enhances vascular matrix metalloproteinase activity. Role of oxidative stress. Circ. Res. 2001; 88: 1291–1298
  • Nakamura T., Fukui M., Ebihara I., Osada S., Tomino Y., Koide H. Abnormal gene expression of matrix metalloproteinases and their inhibitor in glomeruli from diabetic rats. Renal Physiol. Biochem. 1994; 17: 316–325
  • Wu K., Setty S., Mauer S. M., Killen P., Nagase H., Michael A. F., Tsibary E. Altered kidney matrix gene expression in early stages of experimental diabetes. Acta Anatomica 1997; 158: 155–165
  • Portik-Dobos V., Anstadt M. P., Hutchinson J., Bannan M., Ergul A. Evidence for matrix metalloproteinase induction/activation system in arterial vasculature and decreased synthesis and activity in diabetes. Diabetes 2002; 51: 3063–3068
  • Del Prete D., Anglani F., Forino M., Ceol M., Fioretto P., Nosadini R., Baggio B., Gambaro G. Down-regulation of glomerular matrix metalloproteinase-2 gene in human NIDDM. Diabologia 1997; 40: 1449–1454
  • McLennan S., Kelly D., Cox A., Cao Z., Lyons J., Yue D., Gilbert R. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia 2002; 45: 268–275
  • Jesmin S., Sakuma I., YHattori Y., Kitabatake A. Role of angiotensin II in altered expression of molecules responsible for coronary matrix remodeling in insulinresistant diabetic rats. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 2021–2026
  • Daugherty A., Manning M. W., Cassis L. A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 2000; 105: 1605–1612
  • Grant S. F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A. J.S., et al. Variant of transcription factor 7-like 2 (TCF7L2). gene confers risk of type 2 diabetes. Nat. Genet. 2006; 38: 320–323
  • Janssens A. C.J.W., Gwinn M., Valdez R., Naravan K. M.V., Khoury M. J. Predictive genetic testing for type 2 diabetes. BMJ 2006; 333: 509–510
  • Shimazaki A., Kawamura Y., Kanazawa A., Sekine A., Saito S., Tsunoda T., Koya D., et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 2005; 54: 1171–1178
  • Astrand H., Ryden-Ahlgren A., Sundkvist G., Sandgren T., Lanne T. Reduced aortic wall stress in diabetes mellitus. Eur. J. Vasc. Endovasc. Surg. 2007; 33: 592–598
  • Sonesson B., Hansen F., Stale H., Lanne T. Compliance and diameter in the human abdominal aorta—the influence of sex and age. Eur. J. Vasc. Surg. 1993; 7: 690–697
  • Lijnen H. R. Plasmin and matrix metalloproteinases in vascular remodelling. Thromb. Haemost. 2001; 86: 324–333
  • Allaire E., Hasenstab D., Kenagy R. D., Starcher B., Clowes M. M., Clowes A. W. Prevention of aneurysm development and rupture by local overexpression of plasminogen activator inhibitor-1. Circulation 1998; 98: 249–255
  • Deng G. G., Martin-McNulty B., Sukovich D. A., Freay A., Halks-Miller M., Thinnes T., Luskutoff D. J., Carmeleit P., Dole W. P., Wang Y.-X. Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm. Circ. Res. 2003; 92: 510–517
  • Touat Z., Ollivier V., Dai J., Huisse M.-G., Bezeaud A., Sebbag U., Palombi T., Rossignol P., Meilhac O., Guillin M.-C., Michel J.-B. Renewal of mural thrombus releases plasma markers and is involved in aortic aneurysm evolution. Am. J. Path. 2006; 168: 1022–1030
  • Lindholt J. S., Jorgensen B., Fasting H., Henneberg E. W. Plasma levels of plasmin-antiplasmin complexes are predictive for small andominal aortic aneurysms expanding to operation-recommendable sizes. J. Vasc. Surg. 2001; 34: 611–615
  • Rossaak J. I., van Rij A., Jones J. T., Harris E. L. Association of G4/G5 polymorphism in the promoter region of plasminogen activator inhibitor-1 with abdominal aortic aneurysms. J. Vasc. Surg. 2000; 31: 1026–1032
  • Festa A., D'Agostino R., Jr, Mykkanen L., Tracey R. P., Zaccaro D. J., Hales C. N., Haffner S. M. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. Arterioscler. Thromb. Vasc. Biol. 1999; 19: 562–568
  • De Cosmo S., Tassi V., Thomas S., Piras G. P., Trevisan R., Cavallo Perin P., Bacci S., Zucaro L., Cisternino C., Trischitta V., Viberti G. C. The Decorin gene 179 allelic variant is associated with a slower progression of renal disease in patients with type 1 diabetes. Nephron 2002; 92: 72–76
  • Funk M., Endler G., Exner M., Marculescu R., Endler L., Abrahamian H., Mauler H., Grimm A., Raith M., Mannhalter C., Prager R., Irsigler K., Wagner O. F. PAI-1 4G/5G insertion/deletion promoter polymorphism and microvascular complications in type 2 diabetes mellitus. Wien Klin Wochenschr. 2005; 117: 707–710
  • Winlove C. P., Parker K. H., Avery N. C., Bailey A. J. Interactions of elastin and aorta with sugars in vitro and their effects on biochemical and physical properties. Diabetologia 1996; 39: 1131–1139
  • Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J. Hyperten. 2003; 21: 3–12
  • Konova E., Baydanoff S., Atanasova M., Velkova A. Age-related changes in the glycation of human aortic elastin. Exp. Gerontol. 2004; 39: 249–254
  • Schram M. T., Henry R. M.A., van Dijk R. A.J.M., Kostense P. J., Dekker J. M., Nijpels G., Heine R. J., Bouter L. M., et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes. The Hoorn Study. Hypertension 2004; 43: 176–181
  • Rittie L., Berton A., Monboisse J.-C., Hornebeck W., Gillery P. Decreased contraction of glycated lattices coincides with impaired matrix metalloproteinase production. Biochem. Biophys. Res. Comm. 1999; 264: 488–492
  • Kuzuya M., Asai T., Kanda S., Maeda K., Cheng X., Iguchi A. Glycation cross-links inhibit matrix metalloproteinase-2 activation in vascular smooth muscle cells cultured on collagen lattice. Diabetologia 2001; 44: 433–436
  • Kim Y. S., Kim B. C., Song C. Y., Hong H. K., Moon K. C., Lee H. S. Advanced glycosylation end products stimulate collagen mRNA synthesis in mesangial cells mediated by protein kinase C and transforming growth factor-beta. J. Lab. Clin. Med. 2001; 138: 59–68
  • Anderson S., Wu K., Nagase H., Stettlet-Stevenson W., Kim Y., Tsibary E. Effect of matrix glycation on expression of Type IV collagen, MMP-2, MMP-9 and TIMP-1 by human mesangial cells. Cell Adhes. Commun. 1996; 4: 89–101
  • Shimizu K., Mitchell R. N., Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 987–994
  • Fogelstrand L., Hulthe J., Hulten L. M., Wiklund O., Fagerberg B. Monocytic expression of CD14 and CD18, circulating adhesion molecules and inflammatory markers in women with diabetes mellitus and impaired glucose tolerance. Diabetologia 2004; 47: 1948–1952
  • Ziegler D. Type 2 diabetes as an inflammatory cardiovascular disorder. Curr. Mol. Med. 2005; 5: 309–322
  • Marfella R., D'Amico M., Esposito K., Baldi A., Di Filippo C., Siniscalchi M., Sasso F. C., et al. The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes Care 2006; 55: 622–632
  • Burke A. P., Kolodgie F. D., Zieske A., Fowler D. R., Weber D. K., Varghese P. J., Farb A., Virmani R. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 1266–1271
  • Cipollone F., Iezzi A., Fazia M., Zucchelli M., Pini B, Cuccurullo C., De Cesare D., De Blasis G., et al. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 2003; 108: 1070–1077
  • Viardot A., Grey S. T., Mackay F., Chisholm D. Potential anti-inflammatory role of insulin via the preferential polarization of effector T cells towards a T-helper 2 phenotype. Endocrinology 2007; 148: 346–353
  • McGrath J. C., Deighan C., Briones A. M., Shafaroudi M. M., McBride M., Adler J., Arribas S. M., Vila E., Daly C. New aspects of vascular remodelling: the involvement of all vascular cell types. Exp. Physiol. 2005; 90: 469–475
  • Wesley R. N., Meng X., Godin D., Galis Z. S. Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler. Thromb. Vasc. Biol. 1998; 18: 432–440
  • Lepidi S., Kenagy R. D., Raines E. W., Chiu E. S., Chait A., Ross R., Clowes A. W. MMP9 production by human monocyte-derived macrophages is decreased on polymerized type I collagen. J. Vasc. Surg. 2001; 34: 1111–1118
  • Soldatos G., Cooper M. E. Advanced glycation end products and vascular structure and function. Curr. Hypertens. Rep. 2006; 8: 472–478
  • Costa J., Borges M., David C., Vaz Carneiro A. Efficacy of lipid lowering drug treatment for diabetic and non-diabetic patients: meta-analysis of randomised controlled trials. BMJ 2006; 332: 1115–1124
  • Schouten O., van Laanen J. H.H., Boersma E., et al. Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. Eur. J. Vasc. Endovasc. Surg. 2006; 32: 21–26
  • Lewis E. J., Hunsicker L. G., Bain R. P., Rohde R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Eng. J. Med. 1993; 329: 1456–1462
  • Lit Y. Z., Meyer T. Managing diabetic nephropathy: recent studies. Curr. Opin. Nephrol. Hypertens. 2006; 15: 111–116
  • Liao S., Miralles M., Kelley B. J., Curci J. A., Borhani M., Thompson R. W. Suppression of experimental abdominal aneurysms by treatment with angiotensin-converting enzyme inhibitors. J. Vasc. Surg. 2001; 33: 1057–1064
  • Hackam D. G., Thiruchelvam D., Redelmeier D. A. Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study. Lancet 2006; 368: 659–665
  • Rizzoni D., Porteri E., De Ciuceis C., Sleiman I., Rodella L., Rezzani R., Paiardi S., Bianchi R., Ruggeri G., Boari G. E., Muiesan M. L., Salvetti M., Zani F., Miclini M., Rosei E. A. Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with noninsulin-dependent diabetes mellitus. Hypertension 2005; 45: 659–665
  • Jandeleit-Dahm K. A., Lassila M., Allen T. J. Advanced glycation end products in diabetes-associated atherosclerosis and renal disease: interventional studies. Ann. NY Acad. Sci. 2005; 1043: 759–766
  • Bakris G. L., Bank A. J., Kass D. A., Neutel J. M., Preston R. A., Oparil S. Advanced glycation end-product cross-link breakers. Am. J. Hypertens. 2004; 17: 23S–30S
  • Giannico G., Cortes P., Baccora M. H., Hassett C., Taube D. W., Yee J. Glibenclamide prevents increased extracellular matrix formation induced by high glucose concentration in mesangial cells. Am. J. Physiol. Renal. Physiol. 2007; 292: F57–F65
  • Fukui D., Miyagawa S., Soeda J., Tanaka J., Urayama H., Kawasaki S. Overexpression of transforming growth factor β1 in smooth muscle cells of human abdominal aortic aneurysm. Eur. J. Vasc. Endovas. Surg. 2003; 25: 540–545
  • McLennan S., Fisher E., Martell S., Death A., Williams P., Lyons J., Yue D. Effects of glucose on matrix metalloproteinase and plasmin activities in mesangial cells: possible role in diabetic nephropathy. Kidney Int. 2000; 58: S81–S87
  • McLennan S. V., Martell S. Y.K., Yue D. K. High glucose concentration inhibits the expression of membrane type metalloproteinase by mesangial cells: possible role in mesangium accumulation. Diabetologia 2000; 43: 642–648

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.