870
Views
67
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effects of Applied DC Electric Field on Ligament Fibroblast Migration and Wound Healing

, , , &
Pages 188-197 | Received 01 Feb 2007, Accepted 27 Apr 2007, Published online: 06 Aug 2009

REFERENCES

  • Robinson K. The responses of cells to electrical fields: A review. J. Cell Biol. 1985; 101: 2023–2027
  • Soong H. K., Parkinson W. C., Bafna S., Sulik G. L., Huang S. C. Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Invest. Ophthalmol. Vis. Sci. 1990; 31: 2278–2282
  • Nishimura K. Y., Isseroff R. R., Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci. 1996; 109(Pt 1)199–207
  • Nuccitelli R., Erickson C. A. Embryonic cell motility can be guided by physiological electric fields. Exp. Cell Res. 1983; 147: 195–201
  • Erickson C. A. Control of neural crest cell dispersion in the trunk of the avian embryo. Dev. Biol. 1985; 111: 138–157
  • Chang P. C., Sulik G. I., Soong H. K., Parkinson W. C. Galvanotropic and galvanotaxic responses of corneal endothelial cells. J. Formosa Med. Asso. 1996; 95: 623–627
  • Barker A. T., Jaffe L. F., Vanable J. W., Jr. The glabrous epidermis of cavies contains a powerful battery. Am. J. Physiol. 1982; 242: R358–366
  • Sta Iglesia D. D., Vanable J. W., Jr. Endogenous lateral electric fields around bovine corneal lesions are necessary for and can enhance normal rates of wound healing. Wound Repair Regen. 1998; 6: 531–542
  • Vanable J. W., Jr. Integumentary potentials and wound healing. Electric Fields in Vertebrate Repair, R. B. Borgens. A. R. Liss, New York 1989; 171–224
  • Hotary K. B., Robinson K. R. Endogenous electrical currents and voltage gradients in xenopus embryos and the consequences of their disruption. Dev. Biol. 1994; 166: 789–800
  • Borgens R. B., Shi R. Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential. Dev. Dyn. 1995; 203: 456–467
  • Peters E. J., Lavery L. A., Armstrong D. G., Fleischli J. G. Electric stimulation as an adjunct to heal diabetic foot ulcers: A randomized clinical trial. Arch. Phys. Med. Rehabil. 2001; 82: 721–725
  • Akai M., Oda H., Shirasaki Y., Tateishi T. Electrical stimulation of ligament healing. An experimental study of the patellar ligament of rabbits. Clin. Orthop. 1988; 296–301
  • Song B., Zhao M., Forrester J. V., McCaig C. D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc. Natl. Acad. Sci. USA 2002; 99: 13577–13582
  • Finkelstein E., Chang W., Chao P.-H. G., Gruber D., Minden A., Hung C. T., Bulinski J. C. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3t3 fibroblasts. J. Cell Sci. 2004; 117: 1533–1545
  • Lin-Liu S., Adey W. R., Poo M. M. Migration of cell surface concanavalin a receptors in pulsed electric fields. Biophys. J. 1984; 45: 1211–1217
  • Hinsenkamp M., Jercinovic A., de Graef C., Wilaert F., Heenen M. Effects of low frequency pulsed electrical current on keratinocytes in vitro. Bioelectromagnetics 1997; 18: 250–254
  • Brighton C. T., Friedenberg Z. B., Zemsky L. M., Pollis P. R. Direct-current stimulation of non-union and congenital pseudarthrosis. Exploration of its clinical application. J. Bone Joint Surg. Am. 1975; 57: 368–377
  • Paterson D. C., Carter R. F., Maxwell G. M., Hillier T. M., Ludbrook J., Savage J. P. Electrical bone-growth stimulation in an experimental model of delayed union. Lancet 1977; 1: 1278–1281
  • Bassett C. A. Pulsing electromagnetic fields: a new method to modify cell behavior in calcified and noncalcified tissues. Calcif. Tissue Int. 1982; 34: 1–8
  • Rubin C. T., Donahue H. J., Rubin J. E., McLeod K. J. Optimization of electric field parameters for the control of bone remodeling: Exploitation of an indigenous mechanism for the prevention of osteopenia. J. Bone Miner. Res. 1993; 8(Suppl 2)S573–581
  • Aaron R. K., Ciombor D. M., Simon B. J. Treatment of nonunions with electric and electromagnetic fields. Clin. Orthop. 2004; 419: 21–29
  • Kahanovitz N. Electrical stimulation of spinal fusion: A scientific and clinical update. Spine Journal 2002; 2: 145–150
  • Aaron R. K., Boyan B. D., Ciombor D. M., Schwartz Z., Simon B. J. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin. Orthop. 2004; 419: 30–37
  • Hartig M., Joos U., Wiesmann H.-P. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur. Biophys. J. 2000; 29: 499–506
  • Lohmann C. H., Schwartz Z., Liu Y., Guerkov H., Dean D. D., Simon B., Boyan B. D. Pulsed electromagnetic field stimulation of mg63 osteoblast-like cells affects differentiation and local factor production. J. Orthop. Res. 2000; 18: 637–646
  • Chang K., Chang W. H., Wu M. L., Shih C. Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells. Bioelectromagnetics 2003; 24: 431–439
  • Lippiello L., Chakkalakal D., Connolly J. F. Pulsing direct current-induced repair of articular cartilage in rabbit osteochondral defects. J. Orthop. Res. 1990; 8: 266–275
  • Frank C., Schachar N., Dittrich D., Shrive N., deHaas W., Edwards G. Electromagnetic stimulation of ligament healing in rabbits. Clin. Orthop. 1983; 175: 263–272
  • Lin Y., Nishimura R., Nozaki K., Sasaki N., Kadosawa T., Goto N., Date M., Takeuchi A. Effects of pulsing electromagnetic fields on the ligament healing in rabbits. J. Vet. Med. Sci. 1992; 54: 1017–1022
  • Chao P.-H.G., Roy R., Mauck R. L., Liu W., Valhmu W. B., Hung C. T. Chondrocyte translocation response to direct current electric fields. J. Biomech. Eng. 2000; 122: 261–267
  • Arnold J. A., Coker T. P., Heaton L. M., Park J. P., Harris W. D. Natural history of anterior cruciate tears. Am. J. Sports Med. 1979; 7: 305–313
  • Sommerlath K., Lysholm J., Gillquist J. The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9 to 16 year followup. Am. J. Sports Med. 1991; 19: 156–162
  • Sung K. L., Kwan M. K., Maldonado F., Akeson W. H. Adhesion strength of human ligament fibroblasts. J. Biomech. Eng. 1994; 116: 237–242
  • Sung K. L., Yang L., Whittemore D. E., Shi Y., Jin G., Hsieh A. H., Akeson W. H., Sung L. A. The differential adhesion forces of anterior cruciate and medial collateral ligament fibroblasts: Effects of tropomodulin, talin, vinculin, and alpha-actinin. Proc. Natl. Acad. Sci. USA 1996; 93: 9182–9187
  • Yang L., Tsai C. M., Hsieh A. H., Lin V. S., Akeson W. H., Sung K. L. Adhesion strength differential of human ligament fibroblasts to collagen types i and iii. J. Orthop. Res. 1999; 17: 755–762
  • DiMilla P. A., Barbee K., Lauffenburger D. A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 1991; 60: 15–37
  • Wu C.-C., Su H.-W., Lee C.-C., Tang M.-J., Su F.-C. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration. Biochem. Biophys. Res. Commun. 2005; 329: 256–265
  • Stenn K. S. Quantitative assay of dissociated tissue-cell motility in vitro. In Vitro 1980; 16: 357–360
  • Woo S. L., Weiss J. A., MacKenna D. A. Biomechanics and morphology of the medial collateral and anterior cruciate ligaments. Biomechanics of Diarthodial Joints, V. C. Mow, A. Ratcliffe, S. L. Woo. Springer-Verlag, New York 1990
  • Djamgoz M. B. A., Mycielska M., Madeja Z., Fraser S. P., Korohoda W. Directional movement of rat prostate cancer cells in direct-current electric field: Involvement of voltagegated na+ channel activity. J. Cell Sci. 2001; 114: 2697–2705
  • Rozen S., Skaletsky H. J. Primer3 on the www for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology, S. Krawetz, S. Misener. Humana Press, Totowa, NJ 2000; 365–386
  • Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001; 25: 402–408
  • Kobayashi K., Healey R. M., Sah R. L., Clark J. J., Tu B. P., Goomer R. S., Akeson W. H., Moriya H., Amiel D. Novel method for the quantitative assessment of cell migration: a study on the motility of rabbit anterior cruciate (acl) and medial collateral ligament (mcl) cells. Tissue Eng. 2000; 6: 29–38
  • Sheridan D. M., Isseroff R. R., Nuccitelli R. Imposition of a physiologic dc electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J. Invest. Dermatol. 1996; 106: 642–646
  • DiMilla P. A., Stone J. A., Quinn J. A., Albelda S. M., Lauffenburger D. A. Maximal migration of human smooth muscle cells on fibronectin and type iv collagen occurs at an intermediate attachment strength. J. Cell Biol. 1993; 122: 729–737
  • Palecek S., Huttenlocher A., Horwitz A., Lauffenburger D. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J. Cell Sci. 1998; 111: 929–940
  • Hartmann-Petersen R., Walmod P. S., Berezin A., Berezin V., Bock E. Individual cell motility studied by time-lapse video recording: Influence of experimental conditions. Cytometry 2000; 40: 260–270
  • Burgess B. T., Myles J. L., Dickinson R. B. Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of rgd-grafted collagen. Ann. Biomed. Eng. 2000; 28: 110–118
  • Murray M. M., Martin S. D., Spector M. Migration of cells from human anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds. J. Orthop. Res. 2000; 18: 557–564
  • Murray M. M., Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials 2001; 22: 2393–2402
  • Ciombor D. M., Lester G., Aaron R. K., Neame P., Caterson B. Low frequency emf regulates chondrocyte differentiation and expression of matrix proteins. J. Orthop. Res. 2002; 20: 40–50
  • Reinbold K. A., Pollack S. R. Serum plays a critical role in modulating [ca2+] of primary culture bone cells exposed to weak ion-resonance magnetic fields. Bioelectromagnetics 1997; 18: 203–214
  • Brown M. J., Loew L. M. Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol. 1994; 127: 117–128
  • Zhao M., Bai H., Wang E., Forrester J. V., McCaig C. D. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through vegf receptors. J. Cell Sci. 2004; 117: 397–405
  • Franke K., Gruler H. Directed cell movement in pulsed electric fields. Z Naturforsch [C] 1994; 49: 244–249
  • Kindzelskii A. L., Petty H. R. Extremely low frequency pulsed dc electric fields promote neutrophil extension, metabolic resonance and DNA damage when phase-matched with metabolic oscillators. Biochimi. Biophys. Acta—Mol. Cell Res. 2000; 1495: 90–111
  • Steffensen B., Hakkinen L., Larjava H. Proteolytic events of wound-healing-coordinated interactions among matrix metalloproteinases (mmps), integrins, and extracellular matrix molecules. Crit. Rev. Oral Biol. Med. 2001; 12: 373–398
  • Hehenberger K., Kratz G., Hansson A., Brismar K. Fibroblasts derived from human chronic diabetic wounds have a decreased proliferation rate, which is recovered by the addition of heparin. J. Dermatol. Sci. 1998; 16: 144–151
  • Zhao M., Song B., Pu J., Forrester J. V., McCaig C. D. Direct visualization of a stratified epithelium reveals that wounds heal by unified sliding of cell sheets. FASEB J. 2003; 17: 397–406
  • Huttenlocher A., Horwitz A. R. Wound healing with electric potential. N. Engl. J. Med. 2007; 356: 303–304
  • McLeod K., Lee R., Ehrlich H. Frequency dependence of electric field modulation of fibroblast protein synthesis. Science 1987; 236: 1465–1469
  • Vunjak-Novakovic G., Altman G., Horan R., Kaplan D. L. Tissue engineering of ligaments. Annu. Rev. Biomed. Eng. 2004; 6: 131–156
  • Brunette D. M. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp. Cell Res. 1986; 164: 11–26
  • Erskine L., Stewart R., McCaig C. D. Electric field-directed growth and branching of cultured frog nerves: Effects of aminoglycosides and polycations. J. Neurobiol. 1995; 26: 523–536
  • McLaughlin S., Poo M. M. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys. J. 1981; 34: 85–93
  • Gross D. Electromobile surface charge alters membrane potential changes induced by applied electric fields. Biophys. J. 1988; 54: 879–884
  • McCaig C. D., Rajnicek A. M. Electrical fields, nerve growth and nerve regeneration. Exp. Physiol. 1991; 76: 473–494
  • Zhao M., Dick A., Forrester J. V., McCaig C. D. Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol. Biol. Cell 1999; 10: 1259–1276
  • Reid B., Song B., McCaig C. D., Zhao M. Wound healing in rat cornea: the role of electric currents. FASEB J. 2005; 19: 379–386
  • Felson D. T. Stepping away from OA: A scientific conference on the prevention of onset, progression, and disability of osteoarthritis. (eds.). 1999, (NIH, Bethesda, MD)
  • Lu H. H., Cooper J., James A., Manuel S., Freeman J. W., Attawia M. A., Ko F. K., Laurencin C. T. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: In vitro optimization studies. Biomaterials 2005; 26: 4805–4816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.