134
Views
21
CrossRef citations to date
0
Altmetric
Original

Effect of Compressive Force on the Production of Prostaglandin E2 and its Receptors in Osteoblastic Saos-2 Cells

, , , , , , & show all
Pages 246-253 | Received 29 Mar 2007, Accepted 27 Jun 2007, Published online: 06 Aug 2009

REFERENCES

  • Krishnan V., Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofacial Orthop. 2006; 129(469e)1–32
  • Yamasaki K., Shibata Y., Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macaca fuscata). J. Dent. Res. 1982; 61: 1444–1446
  • Yamasaki K., Shibata Y., Imai S., Tani Y., Shibasaki Y., Fukuhara T. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am. J. Orthod. 1984; 85: 508–518
  • Lee W. Experimental study of the effect of prostaglandin administration on tooth movement—with particular emphasis on the relationship to the method of PGE1 administration. Am. J. Orthod. Dentofacial Orthop. 1990; 98: 231–241
  • Leiker B.J., Nanda R.S., Currier G.F., Howes R.I., Sinha P.K. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am. J. Orthod. Dentofacial Orthop. 1995; 108: 380–388
  • Klein D.C., Raisz L.G. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 1970; 86: 1436–1440
  • Rifkin B.R., Baker R.L., Cokeman S.J. Effects of prostaglandin E2 on macrophages and osteoclasts in cultured fetal long bones. Cell Tissue Res. 1980; 207: 341–346
  • Okuda A., Taylor L.M., Heersche J.N. Prostaglandin E2 initially inhibits and then stimulates bone resorption in isolated rabbit osteoclast cultures. Bone Miner. 1989; 7: 255–266
  • Tomita M., Li X., Okada Y., Woodiel F.N., Young R.N., Pilbeam C.C., Raisz L.G. Effects of selective prostaglandin EP4 receptor antagonist on osteoclast formation and bone resorption in vitro. Bone 2002; 30: 159–163
  • Akatsu T., Takahashi N., Udagawa N., Imamura K., Yamaguchi A., Sato K., Nagata N., Suda T. Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J. Bone Miner. Res. 1991; 6: 183–189
  • Kale S., Kocadereli I., Atilla P., Asan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. 2004; 125: 607–614
  • Tanabe N., Maeno M., Suzuki N., Fujisaki K., Tanaka H., Ogiso B., Ito K. IL-1α stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci. 2005; 77: 615–626
  • Tanaka H., Tanabe N., Shoji M., Suzuki N., Katono T., Sato S., Motohashi M., Maeno M. Nicotine and lipopolysaccharide stimulate the formation of osteoclast-like cells by increasing macrophage colony-stimulating factor and prostaglandin E2 production by osteoblasts. Life Sci. 2006; 78: 1733–1740
  • Shoji M., Tanabe N., Mitsui N., Tanaka H., Suzuki N., Takeichi O., Sugaya A., Maeno M. Lipopolysaccharide stimulates the production of prostaglandin E2 and the receptor Ep4 in osteoblasts. Life Sci. 2006; 78: 2012–2018
  • Shoji M., Tanabe N., Mitsui N., Suzuki N., Takeichi O., Katono T., Morozumi A., Maeno M. Lipopolysaccharide enhances the production of nicotine-induced prostaglandin E2 via an increase in cyclooxygenase-2 expression in osteoblasts. Acta Biochim. Biophys. Sin. 2007; 39: 163–172
  • McCarthy T.L., Centrella M., Raisz L.G., Canalis E. Prostaglandin E2 stimulates insulin-like growth factor I synthesis in osteoblast-enriched cultures from fetal rat bone. Endocrinology 1991; 128: 2895–2900
  • Mano M., Arakawa T., Mano H., Nakagawa M., Kaneda T., Kaneko H., Yamada T., Miyata K., Kiyomura H., Kumegawa H., Hakeda Y. Prostaglandin E2 directly inhibits bone-resorbing activity of isolated mature osteoclasts mainly through the EP4 receptor. Calcif. Tissue Int. 2000; 67: 85–92
  • Mitsui N., Suzuki N., Maeno M., Mayahara K., Yanagisawa M., Otsuka K., Shimizu N. Optimal compressive force induces bone formation via increasing bone sialoprotein and prostaglandin E2 production appropriately. Life Sci. 2005; 77: 3168–3182
  • Suzawa T., Miyaura C., Inada M., Maruyama T., Sugimoto Y., Ushikubi F., Ichikawa A., Narumiya S., Suda T. The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 2000; 141: 1554–1559
  • Weinreb M., Machwate M., Shir N., Abramovitz M., Rodan G.A., Harada S. Expression of the prostaglandin E2 (PGE2) receptor subtype EP4 and its regulation by PGE2 in osteoblastic cell lines and adult rat bone tissue. Bone 2001; 28: 275–281
  • Sugimoto Y., Namba T., Honda A., Hayashi Y., Negishi M., Ichikawa A., Narumiya S. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J. Biol. Chem. 1992; 267: 6463–6466
  • Watabe A., Sugimoto Y., Honda A., Irie A., Namba T., Negishi M., Ito S., Narumiya S., Ichikawa A. Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J. Biol. Chem. 1993; 268: 20175–20178
  • Katsuyama M., Nishigaki N., Sugimoto Y., Morimoto K., Negishi M., Narumiya S., Ichikawa A. The mouse prostaglandin E receptor EP2 subtype: cloning, expression, and northern blot analysis. FEBS Lett. 1995; 372: 151–156
  • Suda M., Tanaka K., Natsui K., Usui T., Tanaka I., Fukushima M., Shigeno C., Konishi J., Narumiya S., Ichikawa A., Nakano K. Prostaglandin E receptor subtypes in mouse osteoblastic cell line. Endocrinology 1996; 137: 1698–1705
  • Li X., Okada Y., Pilbeam C.C., Lorenzo J.A., Kennedy C.R., Breyer R.M., Raisz L.G. Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocrinology 2000; 141: 2054–2061
  • Miyaura C., Inada M., Suzawa T., Sugimoto Y., Ushikubi F., Ichikawa A., Narumiya S., Suda T. Impaired bone resorption to prostaglandin E2 in prostaglandin E receptor EP4-knockout mice. J. Biol. Chem. 2000; 275: 19819–19823
  • Sakuma Y., Tanaka K., Suda M., Yasoda A., Natsui K., Tanaka I., Ushikubo F., Narumiya S., Segi E., Sugimoto Y., Ichikawa A., Nakao K. Crucial involvement of the EP4 subtype of prostaglandin E receptor in osteoclast formation by proinflammatory cytokines and lipopolysaccharide. J. Bone Miner. Res. 2000; 15: 218–227
  • Fogh J., Wright W.C., Loveless J.D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst. 1977; 58: 209–214
  • Davidovitch Z., Nicolay O.F., Ngan P.W., Shanfeld J.L. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent. Clin. North Am. 1988; 32: 411–435
  • Kanzaki H., Chiba M., Shimizu Y., Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner. Res. 2002; 17: 210–220
  • Miyamoto K., Suzuki H., Yamamoto S., Saitoh Y., Ochial E., Moritani S., Yokogawa K., Waki Y., Kasugai S., Sawanishi H., Yamagami Y. Prostaglandin E2-mediated anabolic effect of a novel inhibitor of phosphodiesterase 4, XT-611, in the in vitro bone marrow culture. J. Bone Miner. Res. 2003; 18: 1471–1477
  • Kanai K., Nohara H., Hanada K. Initial effects of continuously applied compressive stress to human periodontal ligament fibroblasts. J. Jpn. Orthod. Soc. 1992; 51: 153–163
  • Watanabe K., Saito I., Hanada K. Effects of conditioned medium of continuously compressed human periodontal ligament fibroblasts on MC3T3-E1. J. Jpn. Orthod. Soc. 1998; 57: 173–179
  • Mitsui N., Suzuki N., Maeno M., Yanagisawa M., Koyama Y., Otsuka K., Shimizu N. Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci. 2006; 78: 2697–2706
  • Mitsui N., Suzuki N., Koyama Y., Yanagisawa M., Otsuka K., Shimizu N., Maeno M. Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sci. 2006; 79: 575–583
  • Zohar R., Suzuki N., Suzuki K., Arora P., Glogauer M., McCulloch C. A.G., Sodek J. Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration. J. Cell. Physiol. 2000; 184: 118–130
  • Raisz L.G. Prostaglandins and bone: physiology and pathophysiology. Osteoarthr. Cartil. 1999; 7: 419–421
  • Okada Y., Lorenzo J. A., Freeman A. M., Tomita M., Morham S.G., Raisz L. G., Pilbean C. C. Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J. Clin. Invest. 2000; 105: 823–832
  • Anderson D. M., Maraskovsky E., Billingsley W. L., Dougall W. C., Tometsko M. E., Roux E. R., Teepe M. C., DuBose R. F., Cosman D., Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 175–179
  • Fuller K., Owens J. M., Jagger C. J., Wilson A., Moss R., Chambers T. J. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J. Exp. Med. 1993; 178: 1733–1744
  • Jimi E., Shoto T., Koga T. Macrophage colony-stimulating factor and interleukin-1α maintain the survival of osteoclast-like cells. Endocrinology 1995; 136: 808–811
  • Simonet W. S., Lacey D. L., Dunstan C. R., Kelley M., Chang M. -S., Lüthy R., et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319
  • Kanematsu M., Sato T., Takai H., Watanabe K., Ikeda K., Yamada Y. Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J. Bone Miner. Res. 2000; 15: 1321–1329
  • Samoto H., Shimizu E., Matsuda-Honjyo Y., Saito R., Nakao S., Yamazaki M., Furuyama S., Sugiya H., Sodek Y., Ogata Y. Prostaglandin E2 stimulates bone sialoprotein (BSP) expression through cAMP and fibroblast growth factor 2 response elements in the proximal promoter of the rat BSP gene. J. Biol. Chem. 2003; 278: 28659–28667

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.