78
Views
5
CrossRef citations to date
0
Altmetric
Original

Aortic Smooth Muscle Cells Migration and the Role of Metalloproteinases and Hyaluronan

, , , , , , , , , & show all
Pages 189-192 | Published online: 06 Aug 2009

REFERENCES

  • Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809
  • Halayko A.J., Solway J. Molecular mechanisms of phenotypic plasticity in smooth muscle cells. J. Appl. Physiol. 2001; 90: 358–368
  • Passi A., Negrini D., Albertini R., Miserocchi G., De Luca G. The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema. FEBS Lett. 1999; 456: 93–96
  • Toole B.P. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 2004; 4: 528–539
  • Vigetti D., Viola M., Karousou E., Rizzi M., Moretto P., Genasetti A., Clerici M., Hascall V.C., De Luca G., Passi A. Hyaluronan-CD44-ERK1/2 regulate human aortic smooth muscle cell motility during aging. J. Biol. Chem. 2008; 283: 4448–4458
  • Kuzuya M., Kanda S., Sasaki T., Tamaya-Mori N., Cheng X.W., Itoh T., Itohara S., Iguchi A. Deficiency of gelatinase A suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 2003; 108: 1375–1381
  • Iozzo R.V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 1998; 67: 609–652
  • Sternlicht M.D., Werb Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001; 17: 463–516
  • Whatling C., McPheat W., Hurt-Camejo E. Matrix management: assigning different roles for MMP-2 and MMP-9 in vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 10–11
  • Galis Z.S., Muszynski M., Sukhova G.K., Simon-Morrissey E., Unemori E.N., Lark M.W., Amento E., Libby P. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ. Res. 1994; 75: 181–189
  • Li Z., Froehlich J., Galis Z.S., Lakatta E.G. Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 1999; 33: 116–123
  • Johnson C., Galis Z.S. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 54–60
  • Katsuda S., Kaji T. Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb. 2003; 10: 267–274
  • Lijnen H.R. Metalloproteinases in development and progression of vascular disease. Pathophysiol. Haemost. Thromb. 2003; 33: 275–281
  • McNulty M., Spiers P., McGovern E., Feely J. Aging is associated with increased matrix metalloproteinase-2 activity in the human aorta. Am. J. Hypertens. 2005; 18: 504–509
  • Seiki M. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett. 2003; 194: 1–11
  • Vigetti D., Moretto P., Viola M., Genasetti A., Rizzi M., Karousou E., Pallotti F., De Luca G., Passi A. Matrix metalloproteinase 2 and tissue inhibitors of metalloproteinases regulate human aortic smooth muscle cell migration during in vitro aging. FASEB J. 2006; 20: 1118–1130
  • Lambert E., Dasse E., Haye B., Petitfrere E. TIMPs as multifacial proteins. Crit. Rev. Oncol. Hematol. 2004; 49: 187–198
  • Kadoglou N.P., Liapis C.D. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr. Med. Res. Opin. 2004; 20: 419–432
  • Cheng L., Mantile G., Pauly R., Nater C., Felici A., Monticone R., Bilato C., Gluzband Y.A., Crow M.T., Stetler-Stevenson W., Capogrossi M.C. Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation 1998; 98: 2195–2201
  • McCaffrey T.A., Nicholson A.C., Szabo P.E., Weksler M.E., Weksler B.B. Aging and arteriosclerosis. The increased proliferation of arterial smooth muscle cells isolated from old rats is associated with increased platelet-derived growth factor-like activity. J. Exp. Med. 1988; 167: 163–174
  • Riessen R., Wight T.N., Pastore C., Henley C., Isner J.M. Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries. Circulation 1996; 93: 1141–1147
  • Cuff C.A., Kothapalli D., Azonobi I., Chun S., Zhang Y., Belkin R., Yeh C., Secreto A., Assoian R.K., Rader D.J., Pure E. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J. Clin. Invest. 2001; 108: 1031–1040
  • Nedvetzki S., Gonen E., Assayag N., Reich R., Williams R.O., Thurmond R.L., Huang J., Neudecker B.A., Wang F., Turley E.A., Naor D. RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: a different interpretation of redundacy. Proc. Natl. Acad. Sci. USA, 101: 18081–18086
  • Isacke C.M., Yarwood H. The hyaluronan receptor, CD44. Int. J. Biochem. Cell Biol. 2002; 34: 718–721
  • Troen B.R. The biology of aging. Mt. Sinai J. Med. 2003; 70: 3–22
  • Chang E., Harley C.B. Telomere length and replicative aging in human vascular tissues. Proc. Natl. Acad. Sci. USA 1995; 92: 11190–11194
  • Martin G.M., Ogburn C.E., Wight T.N. Comparative rates of decline in the primary cloning efficiencies of smooth muscle cells from the aging thoracic aorta of two murine species of contrasting maximum life span potentials. Am. J. Pathol. 1983; 110: 236–245
  • Ruiz-Torres A., Lozano R., Melon J., Carraro R. Age-dependent decline of in vitro migration (basal and stimulated by IGF-1 or insulin) of human vascular smooth muscle cells. J. Gerontol. A Biol. Sci. Med. Sci. 2003; 58: B1074–B1077
  • Li Z., Cheng H., Lederer W.J., Froehlich J., Lakatta E.G. Enhanced proliferation and migration and altered cytoskeletal proteins in early passage smooth muscle cells from young and old rat aortic explants. Exp. Mol. Pathol. 1997; 64: 1–11
  • Lundberg M.S., Crow M.T. Age-related changes in the signaling and function of vascular smooth muscle cells. Exp. Gerontol. 1999; 34: 549–557

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.