804
Views
97
CrossRef citations to date
0
Altmetric
Original

The Role of Reactive Oxygen Species in Integrin and Matrix Metalloproteinase Expression and Function

, , , &
Pages 197-202 | Published online: 06 Aug 2009

REFERENCES

  • Bedard K., Krause K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007; 87: 245–313
  • Chiarugi P., Buricchi F. Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid. Redox Signal. 2007; 9: 1–24
  • Terada L.S. Specificity in reactive oxidant signaling: think globally, act locally. J. Cell Biol. 2006; 174: 615–623
  • Ushio-Fukai M. Localizing NADPH oxidase-derived ROS. Sci. STKE 2006, 2006, re8
  • Cross J.V., Templeton D.J. Regulation of signal transduction through protein cysteine oxidation. Antioxid. Redox. Signal. 2006; 8: 1819–1827
  • Chiarugi P., Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signal. 2007; 19: 672–682
  • Nelson K.K., Subbaram S., Connor K.M., Dasgupta J., Ha X.F., Meng T.C., Tonks N.K., Melendez J.A. Redox-dependent matrix metalloproteinase-1 expression is regulated by JNK through Ets and AP-1 promoter motifs. J. Biol. Chem. 2006; 281: 14100–14110
  • Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006; 69: 562–573
  • Yan C., Boyd D.D. Regulation of matrix metalloproteinase gene expression. J. Cell Physiol. 2007; 211: 19–26
  • Nelson K.K., Melendez J.A. Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 2004; 37: 768–784
  • Finkel T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 2003; 15: 247–254
  • Fruehauf J.P., Meyskens F.L. Jr. Reactive oxygen species: a breath of life or death?. Clin. Cancer Res. 2007; 13: 789–794
  • Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 2002; 3: 1129–1134
  • Tonks N.K. Redox redux: revisiting PTPs and the control of cell signaling. Cell 2005; 121: 667–670
  • Wu W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis. Rev. 2006; 25: 695–705
  • Shibanuma M., Mashimo J., Kuroki T., Nose K. Characterization of the TGF beta 1-inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence. J. Biol. Chem. 1994; 269: 26767–26774
  • Lambeth J.D., Kawahara T., Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 2007; 43: 319–331
  • Allen R.G., Tresini M. Oxidative stress and gene regulation. Free Radic. Biol. Med. 2000; 28: 463–499
  • Lambeth J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004; 4: 181–189
  • Hordijk P.L. Regulation of NADPH oxidases: the role of Rac proteins. Circ. Res. 2006; 98: 453–462
  • Burridge K., Wennerberg K. Rho and Rac take center stage. Cell 2004; 116: 167–179
  • Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H., Borisy G., Parsons J.T., Horwitz A.R. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709
  • DeMali K.A., Wennerberg K., Burridge K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 2003; 15: 572–582
  • Del Pozo M.A., Schwartz M.A. Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol. 2007; 17: 246–250
  • Bienert G.P., Moller A.L., Kristiansen K.A., Schulz A., Moller I.M., Schjoerring J.K., Jahn T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 2007; 282: 1183–1192
  • Roy P., Roy S.K., Mitra A., Kulkarni A.P. Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochim. Biophys. Acta. 1994; 1214: 171–179
  • Serezani C.H., Aronoff D.M., Jancar S., Peters-Golden M. Leukotriene B4 mediates p47phox phosphorylation and membrane translocation in polyunsaturated fatty acid-stimulated neutrophils. J. Leukoc. Biol. 2005; 78: 976–984
  • Radmark O., Werz O., Steinhilber D., Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem. Sci. 2007; 32: 332–341
  • Berrier A.L., Yamada K.M. Cell-matrix adhesion. J. Cell Physiol. 2007; 213: 565–573
  • Carragher N.O., Frame M.C. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 2004; 14: 241–249
  • Legate K.R., Montanez E., Kudlacek O., Fassler R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 2006; 7: 20–31
  • Ra H.J., Parks W.C. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007; 26: 587–596
  • Westermarck J., Kahari V.M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999; 13: 781–792
  • Munshi H.G., Stack M.S. Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev. 2006; 25: 45–56
  • Thomas G.J., Nystrom M.L., Marshall J.F. Alphavbeta6 integrin in wound healing and cancer of the oral cavity. J. Oral Pathol. Med. 2006; 35: 1–10
  • Li X., Yang Y., Hu Y., Dang D., Regezi J., Schmidt B.L., Atakilit A., Chen B., Ellis D., Ramos D.M. Alphavbeta6-Fyn signaling promotes oral cancer progression. J. Biol. Chem. 2003; 278: 41646–41653
  • Zeng Z.Z., Jia Y., Hahn N.J., Markwart S.M., Rockwood K.F., Livant D.L. Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res. 2006; 66: 8091–8099
  • Ferri N., Colombo G., Ferrandi C., Raines E.W., Levkau B., Corsini A. Simvastatin reduces MMP1 expression in human smooth muscle cells cultured on polymerized collagen by inhibiting Rac1 activation. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1043–1049
  • Del Carlo M., Schwartz D., Erickson E.A., Loeser R.F. Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic. Biol. Med. 2007; 42: 1350–1358
  • Troussard A.A., Costello P., Yoganathan T.N., Kumagai S., Roskelley C.D., Dedhar S. The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene 2000; 19: 5444–5452
  • Taddei M.L., Parri M., Mello T., Catalano A., Levine A.D., Raugei G., Ramponi G., Chiarugi P. Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid. Redox Signal. 2007; 9: 469–481
  • Werner E., Werb Z. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J. Cell Biol. 2002; 158: 357–368
  • Honore S., Kovacic H., Pichard V., Briand C., Rognoni J.B. Alpha2beta1-integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): implication of NADPH oxidase-dependent production of ROS. Exp. Cell Res. 2003; 285: 59–71
  • Sangrar W., Gao Y., Scott M., Truesdell P., Greer P.A. Fer-mediated cortactin phosphorylation is associated with efficient fibroblast migration and is dependent on reactive oxygen species generation during integrin-mediated cell adhesion. Mol. Cell Biol. 2007; 27: 6140–6152
  • Marcoux N., Vuori K. EGF receptor mediates adhesion-dependent activation of the Rac GTPase: a role for phosphatidylinositol 3-kinase and Vav2. Oncogene 2003; 22: 6100–6106
  • McLean G.W., Carragher N.O., Avizienyte E., Evans J., Brunton V.G., Frame M.C. The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat. Rev. Cancer 2005; 5: 505–515
  • Rhee S.G., Kang S.W., Jeong W., Chang T.S., Yang K.S., Woo H.A. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 2005; 17: 183–189
  • Wu R.F., Xu Y.C., Ma Z., Nwariaku F.E., Sarosi G.A., Jr., Terada L.S. Subcellular targeting of oxidants during endothelial cell migration. J. Cell Biol. 2005; 171: 893–904
  • Burridge K., Sastry S.K., Sallee J.L. Regulation of cell adhesion by protein-tyrosine phosphatases. I. Cell-matrix adhesion. J. Biol. Chem. 2006; 281: 15593–15596
  • Yano S., Arroyo N., Yano N. SHP2 binds catalase and acquires a hydrogen peroxide-resistant phosphatase activity via integrin-signaling. FEBS Lett 2004; 577: 327–332
  • Yano S., Arroyo N., Yano N. Catalase binds Grb2 in tumor cells when stimulated with serum or ligands for integrin receptors. Free Radic. Biol. Med. 2004; 36: 1542–1554
  • Shibanuma M., Kim-Kaneyama J.R., Ishino K., Sakamoto N., Hishiki T., Yamaguchi K., Mori K., Mashimo J., Nose K. Hic-5 communicates between focal adhesions and the nucleus through oxidant-sensitive nuclear export signal. Mol. Biol. Cell 2003; 14: 1158–1171
  • Shibanuma M., Mori K., Kim-Kaneyama J.R., Nose K. Involvement of FAK and PTP-PEST in the regulation of redox-sensitive nuclear-cytoplasmic shuttling of a LIM protein, Hic-5. Antioxid. Redox Signal. 2005; 7: 335–347
  • Fujimoto N., Yeh S., Kang H.Y., Inui S., Chang H.C., Mizokami A., Chang C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J. Biol. Chem. 1999; 274: 8316–8321
  • Shibanuma M., Kim-Kaneyama J.R., Sato S., Nose K. A LIM protein, Hic-5, functions as a potential coactivator for Sp1. J. Cell Biochem. 2004; 91: 633–645
  • Yang L., Guerrero J., Hong H., DeFranco D.B., Stallcup M.R. Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell 2000; 11: 2007–2018
  • Stone J.R., Yang S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 2006; 8: 243–270
  • Connor K.M., Hempel N., Nelson K.K., Dabiri G., Gamarra A., Belarmino J., Van De Water L., Mian B.M., Melendez J.A. Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res. 2007; 67: 10260–10267
  • Ohshima H., Tatemichi M., Sawa T. Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 2003; 417: 3–11
  • Townsend D.M., Tew K.D., Tapiero H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003; 57: 145–155
  • Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007; 39: 44–84
  • Connor K.M., Subbaram S., Regan K.J., Nelson K.K., Mazurkiewicz J.E., Bartholomew P.J., Aplin A.E., Tai Y.T., Aguirre-Ghiso J., Flores S.C., Melendez J.A. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J. Biol. Chem. 2005; 280: 16916–16924
  • Bair E.L., Massey C.P., Tran N.L., Borchers A.H., Heimark R.L., Cress A.E., Bowden G.T. Integrin- and cadherin-mediated induction of the matrix metalloprotease matrilysin in cocultures of malignant oral squamous cell carcinoma cells and dermal fibroblasts. Exp. Cell Res. 2001; 270: 259–267
  • Ramos D.M., But M., Regezi J., Schmidt B.L., Atakilit A., Dang D., Ellis D., Jordan R., Li X. Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol. 2002; 21: 297–307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.