478
Views
33
CrossRef citations to date
0
Altmetric
Original

The Fras1/Frem Family of Extracellular Matrix Proteins: Structure, Function, and Association with Fraser Syndrome and the Mouse bleb Phenotype

, &
Pages 277-282 | Published online: 06 Aug 2009

REFERENCES

  • Kiyozumi D., Osada A., Sugimoto N., Weber C.N., Ono Y., Imai T., Okada A., Sekiguchi K. Identification of a novel cell-adhesive protein spatiotemporally expressed in the basement membrane of mouse developing hair follicle. Exp. Cell. Res. 2005; 306: 9–23
  • Staub E., Hinzmann B., Rosenthal A. A novel repeat in the melanoma-associated chondroitin sulfate proteoglycan defines a new protein family. FEBS Lett. 2002; 527: 114–118
  • Schwarz E.M., Benzer S. Calx a Na-Ca exchanger gene of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1997; 94: 10249–10254
  • Smyth I., Du X., Taylor M.S., Justice M.J., Beutler B., Jackson I.J. The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic dermis. Proc. Natl. Acad. Sci. USA. 2004; 101: 13560–13565
  • Vrontou S., Petrou P., Meyer B.I., Galanopoulos V.K., Imai K., Yanagi M., Chowdhury K., Scambler P.J., Chalepakis G. Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat. Genet. 2003; 34: 209–214
  • McGregor L., Makela V., Darling S.M., Vrontou S., Chalepakis G., Roberts C., Smart N., Rutland P., Prescott N., Hopkins J., Bentley E., Shaw A., Roberts E., Mueller R., Jadeja S., Philip N., Nelson J., Francannet C., Perez-Aytes A., Megarbane A., Kerr B., Wainwright B., Woolf A.S., Winter R.M., Scambler P.J. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat. Genet. 2003; 34: 203–208
  • Garcia-Abreu J., Coffinier C., Larrain J., Oelgeschläger M., De Robertis E.M. Chordin-like CR domains and the regulation of evolutionary conserved extracellular signaling systems. Gene 2002; 287: 39–47
  • Roebroek A.J., Creemers J.V., Pauli I.G., Kurzik-Dumke U., Rentrop M., Gateff E.A., Leunissen J.A., Van de Ven W.J. Cloning and functional expression of Dfurin2, a subtilisin-like proprotein processing enzyme of Drosophila melanogaster with multiple repeats of a cysteine motif. J. Biol. Chem. 1992; 267: 17208–17215
  • Hodor P.G., Illies M.R., Broadley S., Ettensohn C.A. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Dev. Biol. 2000; 22: 181–194
  • Short K., Wiradjaja F., Smyth N. Lett's stick together: the role of the Fras1 and Frem proteins in epidermal adhesion. IUBMB, Life. 2007; 59: 427–435
  • Chiotaki R., Petrou P., Giakoumaki E., Pavlakis E., Sitaru C., Chalepakis G. Spatiotemporal distribution of Fras1/Frem proteins during mouse embryonic development. Gene Expr. Patterns. 2007; 7: 381–188
  • Petrou P., Pavlakis E., Dalezios Y., Chalepakis G. Basement membrane localization of Frem3 is independent of the Fras1/Frem1/Frem2 protein complex within the sublamina densa. Matrix Biol. 2007, in press
  • Dalezios Y., Papasozomenos B., Petrou P., Chalepakis G. Ultrastructural localization of Fras1 in the sublamina densa of embryonic epithelial basement membranes. Arch. Dermatol. Res. 2007; 299: 337–343
  • Petrou P., Chiotaki R., Dalezios Y., Chalepakis G. Overlapping and divergent localization of Fras1 and Frem1 and its functional implications during embryonic development. Exp. Cell. Res. 2007; 313: 910–920
  • Koster M.I., Dai D., Marinari B., Sano Y., Costanzo A., Karin M., Roop D.R. p63 induces key target genes required for epidermal morphogenesis. Proc. Natl. Acad. Sci. USA 2007; 104: 3255–3260
  • Darling S., Gossler A. A mouse model for Fraser syndrome?. Clin. Dysmorphol. 1994; 3: 91–95
  • Jadeja S., Smyth I., Pitera J.E., Taylor M.S., van Haelst M., Bentley E., McGregor L., Hopkins J., Chalepakis G., Philip N., Aytes A.P., Watt F.M., Darling S.M., Jackson I., Woolf A.S., Scambler P.J. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat. Genet. 2005; 37: 520–525
  • Timmer J.R., Mak T.W., Manova K., Anderson K.V., Niswander L. Tissue morphogenesis and vascular stability require the Frem2 protein, product of the mouse myelencephalic blebs gene. Proc. Natl. Acad. Sci. USA 2005; 102: 11746–11750
  • Takamiya K., Kostourou V., Adams S., Jadeja S., Chalepakis G., Scambler P.J., Huganir R.L., Adams R.H. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 2004; 36: 172–177
  • Winter R.M. Fraser syndrome and mouse “bleb” mutants. Clin. Genet. 1990; 37: 494–495
  • Slavotinek A.M., Tifft C.J. Fraser syndrome and cryptophthalmos: review of the diagnostic criteria and evidence for phenotypic modules in complex malformation syndromes. J. Med. Genet. 2002; 39: 623–633
  • Bladt F., Tafuri A., Gelkop S., Langille L., Pawson T. Epidermolysis bullosa and embryonic lethality in mice lacking the multi-PDZ domain protein GRIP1. Proc. Natl. Acad. Sci. USA 2002; 99: 6816–6821
  • Kiyozumi D., Sugimoto N., Sekiguchi K. Breakdown of the reciprocal stabilization of QBRICK/Frem1, Fras1 and Frem2 at the basement membrane provokes Fraser syndrome-like defects. Proc. Natl. Acad. Sci. USA 2006; 103: 11981–11986
  • Kiyozumi D., Sugimoto N., Nakano I., Sekiguchi K. Frem3, a member of the 12 CSPG-repeats containing extracellular matrix protein family, is a basement membrane protein with tissue distribution patterns distinct from those of Fras1, Frem2 and QBRICK/Frem1. Matrix Biol. 2007; 26: 456–462
  • Bruckner-Tuderman L., Hopfner B., Hammami-Hauasli N. Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa. Matrix Biol. 1999; 18: 43–54
  • Dubois C.M., Laprise M.H., Blanchette F., Gentry L.E., Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J. Biol. Chem. 1995; 270: 10618–10624
  • Goretzki L., Burg M.A., Grako K.A., Stallcup W.B. High-affinity binding of the basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J. Biol. Chem. 1999; 274: 16831–16837
  • Ding H., Wu X., Boström H., Kim I., Wong N., Tsoi B., O’ Rourke M., Young Koh G., Soriano P., Bestholtz C., Hart T.C., Marazita M.L., Field L.L., Tam P.L.L., Nagy A. A specific requirement for PDGF-C in palate formation and PDGFR-α signaling. Nat. Genet. 2004; 36: 1111–1116
  • Soriano P. The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development 1997; 124: 2691–2700
  • Prasun P., Pradhan M., Goel H. Intrafamilial variability in Fraser syndrome. Prenat. Diagn. 2007; 27: 778–782

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.