750
Views
63
CrossRef citations to date
0
Altmetric
Original

Hyaluronan and Human Endothelial Cell Behavior

, , , , , , , , , & show all
Pages 120-123 | Published online: 06 Aug 2009

REFERENCES

  • Karamanos N.K., Axelsson S., Vanky P., Tzanakakis G.N., Hjerpe A. Determination of hyaluronan and galactosaminoglycan disaccharides by high-performance capillary electrophoresis at the attomole level. Applications to analyses of tissue and cell culture proteoglycans. J. Chromatogr. A. 1995; 696: 295–305
  • McDonald J., Hascall V.C. Hyaluronan minireview series. J. Biol. Chem. 2002; 277: 4575–4579
  • Scott J.E., Heatley F. Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spettroscopy. Biomavromolecules. 2002; 3: 547–553
  • Day A.J., Prestwich G.D. Hyaluronan-binding proteins: tying up the giant. J. Biol. Chem. 2002; 277: 4585–4588
  • Zhuo L, Yoneda M, Zhao M, Yingsung W., Yoshida N., Kitagawa Y., Kawamura K., Suzuki T., Kimata K. Defect in SHAP-hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice. J. Biol. Chem. 2001; 276: 7693–7696
  • Cichy J., Puré E. The liberation of CD44. J. Cell. Biol. 2003; 161: 839–843
  • Itano N., Atsumi F., Sawai T., Yamada Y., Miyaishi O., Senga T., Hamaguchi M., Kimata K. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc. Natl. Acad. Sci. USA 2002; 99: 3609–3614
  • Müllegger J, Rustom A., Kreil G., Gerdes H.H., Lepperdinger G. ‘Piggy-back’ transport of Xenopus hyaluronan synthase (XHAS1) via the secretory pathway to the plasma membrane. Biol. Chem. 2003; 384: 175–182
  • Tlapak-Simmons V.L., Baron C.A., Gotschall R., Haque D., Canfield W.M., Weigel PH. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end. J. Biol. Chem. 2005; 280: 13012–13018
  • Stern R., Jedrzejas M.J. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem. Rev. 2006; 106: 818–839
  • Tirone E., D’Alessandris C., Hascall V.C., Siracusa G., Salustri A. Hyaluronan synthesis by mouse cumulus cells is regulated by interactions between follicle-stimulating hormone (or epidermal growth factor) and a soluble oocyte factor (or transforming growth factor beta1). J. Biol. Chem. 1997; 272: 4787–4794
  • Wight T.N., Lara S., Riessen R., Le Baron R., Isner J. Selective deposits of versican in the extracellular matrix of restenotic lesions from human peripheral arteries. Am. J. Pathol. 1997; 151: 963–973
  • Karousou E.G., Viola M., Genasetti A., Vigetti D., De Luca G., Karamanos N.K., Passi A. Application of polyacrylamide gel electrophoresis of fluorophore-labeled saccharides for analysis of hyaluronan and chondroitin sulfate in human and animal tissues and cell cultures. Biomed. Chromatogr. 2005; 19: 761–765
  • Henry C.B., Duling B.R. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 1999; 277: H508–514
  • Vigetti D., Ori M., Viola M., Genasetti A., Karousou E., Rizzi M., Pallotti F., Nardi I., Hascall V.C., De Luca G., Passi A. Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J. Biol. Chem. 2006; 281: 8254–8263
  • Slevin M., Krupinski J., Gaffney J., Matou S., West D., Delisser H., Savani R.C., Kumar S. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol. 2007; 26: 58–68
  • de la Motte C.A., Hascall V.C., Drazba J., Bandyopadhyay S.K., Strong S.A. Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function. Am. J. Pathol. 2003; 163: 121–133
  • Majors A.K., Austin R.C., de la Motte C.A., Pyeritz R.E., Hascall V.C., Kessler S.P., Sen G., Strong S.A. Endoplasmic reticulum stress induces hyaluronan deposition and leukocyte adhesion. J. Biol. Chem. 2003; 278: 47223–47231
  • Tammi R., Rilla K., Pienimaki J.P., MacCallum D.K., Hogg M., Luukkonen M., Hascall V.C., Tammi M. Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J. Biol. Chem. 2001; 276: 35111–1122
  • Davis G.E., Senger D.R. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 2005; 97: 1093–1097
  • Slevin M., West D., Kuma P., Rooney P., Kumar S. Hyaluronan, angiogenesis and malignant disease. Int. J. Cancer 2004; 109: 793–794
  • Jiang D., Liang J., Fan J., Yu S., Chen S., Luo Y., Prestwich G.D., Mascarenhas M.M., Garg H.G., Quinn D.A., Homer R.J., Goldstein D.R., Bucala R., Lee P.J., Medzhitov R., Noble P.W. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 2005; 11: 1173–1179
  • Cao G., Savani R.C., Fehrenbach M., Lyons C., Zhang L., Coukos G., Delisser H.M. Involvement of endothelial CD44 during in vivo angiogenesis. Am. J. Pathol. 2006; 169(1)325–336
  • Stern R. Hyaluronan metabolism: a major paradox in cancer biology. Pathol. Biol. 2005; 53: 372–382
  • Itano N., Atsumi F., Sawai T., Yamada Y., Miyaishi O., Senga T., Hamaguchi M., Kimata K. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc. Natl. Acad. Sci. USA 2002; 99: 3609–3614
  • Udabage L., Brownlee G.R., Nilsson S.K., Brown T.J. The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp. Cell Res. 2005; 310: 205–217
  • Itano N., Sawai T., Atsumi F., Miyaishi O., Taniguchi S., Kannagi R., Hamaguchi M., Kimata K. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J. Biol. Chem. 2004; 279: 18679–1887
  • Knudson C.B., Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993; 7: 1233–1241
  • Hascall V.C., Majors A.K., De La Motte C.A., Evanko S.P., Wang A., Drazba J.A., Strong S.A., Wight T.N. Intracellular hyaluronan: a new frontier for inflammation?. Biochim. Biophys. Acta. 2004; 1673: 3–12
  • DeGrendele H.C., Estess P., Siegelman M.H. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997; 278: 672–675
  • Noble P.W. Hyaluronan and its catabolic products in tissue injury and repair. Matri. Biol. 2002; 21: 25–29
  • Termeer C.C., Hennies J., Voith U., Ahrens T., Weiss J.M., Prehm P., Simon J.C. Oligosaccharides of hyaluronan are potent activators of dendritic cells. J. Immunol. 2000; 165(4)1863–1870
  • Termeer C., Benedix F., Sleeman J., Fieber C., Voith U., Ahrens T., Miyake K., Freudenberg M., Galanos C., Simon J.C. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 2002; 195(1)99–111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.