448
Views
19
CrossRef citations to date
0
Altmetric
Original

The Role of Biglycan in the Heart

&
Pages 129-132 | Published online: 06 Aug 2009

REFERENCES

  • Fisher L.W., Termine J.D., Young M.F. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J. Biol. Chem. 1989; 264: 4571–4576
  • Ameye L., Young M.F. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 2002; 12: 107R–116R
  • Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991; 64: 867–869
  • Iozzo R.V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 1998; 67: 609–652
  • Latif N., Sarathchandra P., Taylor P.M., et al. Localization and pattern of expression of extracellular matrix components in human heart valves. J. Heart Valve Dis. 2005; 14: 542–548
  • Wight T.N., Kinsella M.G., Qwarnstrom E.E. The role of proteoglycans in cell adhesion, migration and proliferation. Curr. Op. Cell. Biol. 1992; 4: 793–801
  • Camejo G., Hurt-Camejo E., Wiklund O., et al. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 1998; 139: 205–222
  • Williams K.J. Arterial wall chondroitin sulfate proteoglycans: diverse molecules with distinct roles in lipoprotein retention and atherogenesis. Cur. Opin. Lipidol. 2001; 12: 477–487
  • Dreher K.L., Asundi V., Matzura D., et al. Vascular smooth muscle biglycan represents a highly conserved proteoglycan within the arterial wall. Eur. J. Cell. Biol. 1990; 53: 296–304
  • Riessen R., Isner J.M., Blessing E., et al. Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am. J. Pathol. 1994; 144: 962–974
  • O’Brien K.D., Olin K.L., Alpers C.E. Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 1998; 519–527
  • Sambadam T., Baker J.R., Christner J.E., et al. Specificity of the low-density lipoprotein glycosaminoglycan interaction. Arteriosc. Throm. 1991; 11: 561–568
  • Santiago-Garcia J., Kodama T., Pitas R.E. The class A scavenger receptor binds to proteoglycans and mediates adhesion of macrophages to the extracellular matrix. J. Biol. Chem. 2003; 278: 6942–6946
  • Chang M.Y., Tsoi C., Wight T.N., et al. Lysophosphatidylcholine regulates synthesis of biglycan and the proteoglycan form of macrophage colony stimulating factor. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 809–815
  • Schönherr E., Jarvelainen H.T., Kinsella M.G., et al. Platelet-derived growth factor and transforming growth factor-beta 1 differentially affect the synthesis of biglycan and decorin by monkey arterial smooth muscle cells. Arterioscler. Thromb. 1993; 13: 1026–1036
  • Lijnen P.J., Petrov V.V., Fagard R.H. Induction of cardiac fibrosis by transforming growth factor-[beta]1. Mol. Gen. Metabol. 2000; 71: 418–435
  • Bereczki E., Gonda S., Csont T., Korpos E., Zvara A., Ferdinandy P., Santha M. Overexpression of biglycan in the heart of transgenic mice: an antibody microarray study. J. Proteome. Res. 2007; 6: 854–61
  • Breuer B., Schmidt G., Kresse H. Non-uniform influence of transforming growth factor-beta on the biosynthesis of different forms of small chondroitin sulphate/dermatan sulphate proteoglycan. Biochem. J. 1990; 269: 551–554
  • Ungefroren H., Krull N.B. Transcriptional regulation of the human biglycan gene. J. Biol. Chem. 1996; 271: 15787–15795
  • Ahmed M.S., Oie E., Vinge L.E. Induction of myocardial biglycan in heart failure in rats–an extracellular matrix component targeted by AT1 receptor antagonism. Cardiovasc. Res. 2003; 60: 557–568
  • Murakami M., Kusachi S., Nakahama M., et al. Expression of the alpha 1 and alpha 2 chains of type IV collagen in the infarct zone of rat myocardial infarction. J. Mol. Cell. Cardiol. 1998; 30: 1191–202
  • Melendez J., Turner C., Avraham H., et al. Cardiomyocyte apoptosis triggered by RAFTK/pyk2 via src kinase is antagonized by paxillin. J. Biol. Chem. 2004; 279: 53516–53523
  • Weis S.M, Zimmermann S.D., Shah M., Covell J.W., Omens J.H., Ross J., Jr, Dalton N, Jones Y, Reed C.C., Iozzo R.V., McCulloch A.D. A role for decorin in the remodeling of myocardial infarction. Matrix Biol. 2005; 24: 313–324
  • Xu T.S., Bianco P., Fisher L.W., et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet. 1998; 20: 78–82
  • Ferdinandy P., Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 2003; 138: 532–543
  • Janssens S., Pokreisz P., Schoonjans L., Pellens M., Vermeersch P., Tjwa M., Jans P., Scherrer-Crosbie M., Picard M. H., Szelid Z., Gillijns H., Van de Werf F., Collen D., Bloch K. D. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ. Res. 2004; 94: 1256–1262
  • Yamamoto K., Kusachi S., Ninomiya Y., et al. Increase in the expression of biglycan mRNA expression co-localized closely with that of type I collagen mRNA in the infarct zone after experimentally-induced myocardial infarction in rats. J. Mol. Cell. Card. 1998; 30: 1749–1756
  • Tufvesson E., Westergren-Thorsson G. Tumour necrosis factor-alpha interacts with biglycan and decorin. Febs Lett. 2002; 530: 124–128
  • Hocking A.M., Strugnell R.A., Ramamurthy P., et al. Eukaryotic expression of recombinant biglycan—post-translational processing and the importance of secondary structure for biological activity. J. Biol. Chem. 1996; 271: 19571–19577
  • Schönherr E., Hausser H., Beavan L., et al. Decorin-type I collagen interaction. Presence of separate core proteinbinding domains. J. Biol. Chem. 1995; 270: 8877–83
  • Wiberg C., Klatt A.R., Wagener R., et al. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J. Biol. Chem. 2003; 278: 37698–37704
  • Bowe M.A., Mendis D.B., Fallon J.R. The small leucine-rich repeat proteoglycan biglycan binds to alpha-dystroglycan and is upregulated in dystrophic muscle. J. Cell. Biol. 2000; 148: 801–810
  • Schaefer L., Babelova A, Kiss E., et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest. 2005; 115: 2223–2233
  • Michels J., Johnson P.W.M., Packham G. Mcl-1. Inter. J. Biochem. Cell Biol. 2005; 37(2)267–271
  • Shimizu-Hirota R., Sasamura H., Kuroda M., et al. Extracellular matrix glycoprotein biglycan enhances vascular smooth muscle cell proliferation and migration. Circ. Res. 2004; 94: 1067–1074
  • Kikuchi A., Tomoyasu H., Kido I., et al. Haemopoietic biglycan produced by brain cells stimulates growth of microglial cells. J. Neuroimmunol. 2000; 106: 78–86
  • Schaefer L., Beck K.F., Raslik I., et al. Biglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells. J. Biol. Chem. 2003; 278: 26227–26237
  • Weber C.K., Sommer G., Michl P., et al. Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology 2001; 121: 657–667
  • Strehler E. E., Zacharias D. A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol.Rev. 2001; 81: 21–50
  • Williams J. C., Armesilla A. L., Mohamed T. M. A., Hagarty C. L., McIntyre F. H., Schomburg S., Zaki A. O., Oceandy D., Cartwright E. J., Buch M. H., Emerson M., Neyses L. The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J.Biol.Chem. 2006; 281: 23341–23348
  • Geppert M., Goda Y., Hammer R.E., Li C., Rosahl T.W., Stevens C.F., Sudhof T.C. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 1994; 79: 717–727

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.