306
Views
37
CrossRef citations to date
0
Altmetric
Original

The Activities of Heparan Sulfate and its Analogue Heparin are Dictated by Biosynthesis, Sequence, and Conformation

, , , , &
Pages 140-144 | Published online: 06 Aug 2009

REFERENCES

  • Turnbull J., Powell A., Guimond S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell. Biol. 2001; 11: 75–82
  • Warner R.G., Hundt C., Weiss S., Turnbull J.E. Identification of the heparan sulfate binding sites in the cellular prion protein. J. Biol. Chem. 2002; 277: 18421–18430
  • Snow A.D., Mar H., Nochlin D., Kimata K., Kato M., Suzuki S., Hassell J., Wight T.N. The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's disease. Am. J. Pathol. 1988; 133: 456–463
  • Patel M., Yanagishita M., Roderiquez G., Bou-Habib D.C., Oravecz T., Hascall V.C., Norcross M.A. Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res. Hum Retrovir. 1993; 9: 167–174
  • Pancake S.J., Holt G.D., Mellouk S., Hoffman S.L. Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates. J. Cell Biol. 1992; 117: 1351–1357
  • Scarselli M., Serruto D., Montanari P., Capecchi B., Adu-Bobie J., Veggi D., Rappuoli R., Pizza M., Arico B. Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol. Microbiol. 2006; 61: 631–644
  • Lin Y.L., Lei H.Y., Lin Y.S., Yeh T.M., Chen S.H., Liu H.S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral. Res. 2002; 56: 93–96
  • Patey S.J., Edwards E.A., Yates E.A., Turnbull J.E. Heparin derivatives as inhibitors of BACE-1, the Alzheimer's beta-secretase, with reduced activity against factor Xa and other proteases. J. Med. Chem. 2006; 49: 6129–6132
  • Rabenstein D.L. Heparin and heparan sulfate: structure and function. Nat. Prod. Rep. 2002; 19: 312–331
  • Aikawa J., Esko J.D. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family. J. Biol. Chem. 1999; 274: 2690–2695
  • Habuchi H., Tanaka M., Habuchi O., Yoshida K., Suzuki H., Ban K., Kimata K. The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J. Biol. Chem. 2000; 275: 2859–2868
  • Shworak N.W., Liu J., Petros L.M., Zhang L., Kobayashi M., Copeland N.G., Jenkins N.A., Rosenberg R.D. Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cdnas and identification of distinct genomic loci. J. Biol. Chem. 1999; 274: 5170–5184
  • Kobayashi M., Habuchi H., Yoneda M., Habuchi O., Kimata K. Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase. J. Biol. Chem. 1997; 272: 13980–13985
  • Li J., Hagner-McWhirter A., Kjellen L., Palgi J., Jalkanen M., Lindahl U. Biosynthesis of heparin/heparan sulfate. cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung. J. Biol. Chem. 1997; 272: 28158–28163
  • Allen B.L., Rapraeger A.C. Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly. J. Cell Biol. 2003; 163: 637–648
  • Jayson G.C., Lyon M., Paraskeva C., Turnbull J.E., Deakin J.A., Gallagher J.T. Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J. Biol. Chem. 1998; 273: 51–57
  • Kato M., Wang H., Bernfield M., Gallagher J.T., Turnbull J.E. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J. Biol. Chem. 1994; 269: 18881–18890
  • Turnbull J.E., Gallagher J.T. Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure. Biochem. J. 1991; 273(Pt 3)553–559
  • Lindahl U., Kusche-Gullberg M., Kjellen L. Regulated diversity of heparan sulfate. J. Biol. Chem. 1998; 273: 24979–24982
  • Nugent M.A. Heparin sequencing brings structure to the function of complex oligosaccharides. Proc. Natl. Acad. Sci. USA 2000; 97: 10301–10303
  • Rapraeger A.C., Guimond S., Krufka A., Olwin B.B. Regulation by heparan sulfate in fibroblast growth factor signaling. Methods Enzymol. 1994; 245: 219–240
  • Rapraeger A.C., Krufka A., Olwin B.B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252: 1705–1708
  • Zhang L., Lawrence R., Frazier B.A., Esko J.D. CHO glycosylation mutants: proteoglycans. Methods Enzymol. 2006; 416: 205–221
  • Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., Goldfarb M. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 1996; 271: 15292–15297
  • Nieduszynski I.A., Atkins E.D. Conformation of the mucopolysaccharides. X-ray fibre diffraction of heparin. Biochem. J. 1973; 135: 729–733
  • Mulloy B., Forster M.J., Jones C., Davies D.B. N m.r.and molecular-modelling studies of the solution conformation of heparin. Biochem. J. 1993; 293(Pt 3)849–858
  • Hricovini M., Guerrini M., Torri G., Piani S., Ungarelli F. Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res. 1995; 277: 11–23
  • Hricovini M., Guerrini M., Torri G., Casu B. Motional properties of E. coli polysaccharide K5 in aqueous solution analyzed by NMR relaxation measurements. Carbohydr. Res. 1997; 300: 69–76
  • Mackie W., Yates E.A., Lamba D. Structural studies of O-sulfated D-glucosamines - the crystal and molecular-structures of 2-amino-2-deoxy-alpha/beta-D-glucopyranose 3-sulfate (free acid) and 2-amino-2-deoxy-beta-D-glucopyranose 6-sulfate (free-base). Carbohydr. Res. 1995; 266: 65–74
  • Yates E.A., Mackie W., Lamba D. The crystal and molecular structure of 2-sulfamino-2-deoxy-alpha-D-glucopyranose sodium salt.2H2O (glucosamine 2-sulfate). Int. J. Biol. Macromol. 1995; 17: 219–226
  • Ayotte L., Perlin A.S. N.m.r. spectroscopic observations related to the function of sulfate groups in heparin. Calcium binding vs. biological activity. Carbohydr. Res. 1986; 145: 267–277
  • Rabenstein D.L., Robert J.M., Peng J. Multinuclear magnetic resonance studies of the interaction of inorganic cations with heparin. Carbohydr. Res. 1995; 278: 239–256
  • Angulo J., De Paz J.L., Nieto P.M., Martin-Lomas M. Interaction of heparin with Ca2+. A model study with synthetic heparin-like hexasaccharide. Isr. J. Chem. 2000; 40: 289–299
  • Yates E.A., Santini F., De Cristofano B., Payre N., Cosentino C., Guerrini M., Naggi A., Torri G., Hricovini M. Effect of substitution pattern on 1H, 13C NMR chemical shifts and 1J(CH) coupling constants in heparin derivatives. Carbohydr. Res. 2000; 329: 239–247
  • Yates E.A., Santini F., Guerrini M., Naggi A., Torri G., Casu B. 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr. Res. 1996; 294: 15–27
  • Morris E.R., Rees D.A., Sanderson G.R., Thom D. Conformation and Circular-Dichroism of Uronic Acid Residues in Glycosides and Polysaccharides. J. Chem. Soc. Perkin Transactions. 1975; 2: 1418–1425
  • Rudd T.R., Guimond S.E., Skidmore M.A., Duchesne L., Guerrini M., Torri G., Cosentino C., Brown A., Clarke D.T., Turnbull J.E., Fernig D.G., Yates E.A. Influence of substitution pattern and cation binding on conformation and activity in heparin derivatives. Glycobiology 2007; 17: 983–993
  • Almond A., Sheehan J.K. Predicting the molecular shape of polysaccharides from dynamic interactions with water. Glycobiology 2003; 13: 255–264

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.