254
Views
21
CrossRef citations to date
0
Altmetric
Original

NHE-1: A Molecular Target for Signalling and Cell Matrix Interactions

, &
Pages 157-161 | Published online: 06 Aug 2009

REFERENCES

  • Putney L., Denker S., Barber D. The changing face of the Na+/H +exchanger, NHE1: structure, regulation, and cellular actions. Ann. Rev. Pharmacol. Toxicol. 2002; 42: 527–552
  • Orlowski J., Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflug. Archiv. 2004; 447(5)549–565
  • Fliegel L. The Na+/H+ exchanger isoform 1. Inter. J. Biochem. Cell Biol. 2005; 37: 33–37
  • Wakabayashi S., Pang T., Su X., Shigekawa M. A novel topology model o the human Na+/H +exchanger isoform 1. J. Biol. Chem. 2000; 275: 7942–7949
  • Khaled A., Moor A., Li A., Kim K., Ferris D., Muegge K., et al. Trophic factor withdrawal: p-38 mitogen-activator protein kinase activates NHE1, which induces intracellular alklinization. Mol. Cell. Biol. 2001; 21: 7545–7557
  • Moor A., Gan X., Karmazyn M., Fliegel L. Protein kinase mediated regulation of the Na+/H+ exchanger isoform 1 (NHE1) in ischemic and ischemic/reperfused rat heart. J. Biol. Chem. 2001; 27: 16113–16122
  • Tominanga T., Barber D. NHE1 acts downstream of RhoA to regulate integrin induced cell adhesion and spreading. Mol. Biol. Cell. 1998; 9: 2287–2303
  • Avkiran M., Haworth R. Regulatory effects of G protein-coupled receptors on cardiac sorcolemmal Na+/H+ exchanger activity: signalling and significance. Cardvasc. Res. 2003; 57: 942–952
  • Shrode L., Tapper H., Grinstein S. Role of intracellular pH in proliferation, transformation, and apoptosis. J. Bioenerg. Biomembranes. 1997; 29: 393–399
  • Delvaux M., Bastie M., Chentoufi J., Cragoe E., Vaysse N., Ribet A. Amiloride and analogues inhibit Na+/H+ exchange and cell proliferation in AR42J pancreatic cell line. Am. J. Physiol. 1990; 259: G842–G849
  • Kapus A., Gristein S., Wasan S., Kandasamy R., Orlowski J. Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role of cell proliferation. J. Biol. Chem. 1994; 269: 23544–23552
  • Madshus I. Regulation of intracellular pH in eukaryotic cells. Biochem. J. 1988; 250: 1–8
  • O’Neill W. Physiological significance of volume-regulatory transporters. Am. J. Physiol. 1999; 276: C995–C1011
  • Rouzaire-Dubois B., O’Regan S., Dubois J. Cell size-dependent and independent proliferation of rodent neuroblastoma x glioma cells. J. Cell. Physiol. 2005; 203: 243–250
  • Dmitrieva N., Michea L., Rocha G., Burg M. Cell cycle delay and apoptosis in response to osmotic stress. Comb. Biochem. Physiol. A Mol. Integr. Physiol. 2001; 130: 411–420
  • Wang D., Balkovetz D., Wornock D. Mutational analysis of transmembrane histidines in the amiloride sensitive Na+/H+ exchanger. Am. J Physiol. 1995; 269: C392–C402
  • Bell S., Schreiner C., Schultheis P., Miller M., Evans R., et al. Targeted disruption of the murine NHE1 locus induces ataxia, growth retardation and seizures. Am. J. Physiol. 1999; 276: C788–C795
  • Leist M., Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell. Biol. 2001; 2: 589–598
  • Lang F., Madlung J., Bock J., Lukewille U., Kaltenbach S., Lang K., et al. Inhibition of Jurkat-T-lymphocyte Na+/H+ exchanger by CD95 (Fas/Apo-1)-receptor stimulation. Pflugers. Arch. 2000; 440: 902–907
  • Wu K., Khan S., Lajhe-Reddy S., Wang L., Jarad J., Miller R., et al. Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE-2 Na+/H +exchanger. Am. J. Physiol. Renal. Physiol. 2003; 284: F829–F839
  • Cho Y., Lee K., Lee S., Namkoong S., Kim Y., Lee H., et al. Amiloride potentiates TRAIL-induced tumor cell apoptosis by intracellular acidification-dependent Akt inactivation. Biochem. Biophys. Res. Commun. 2005; 326: 752–758
  • Nylandsted J., Jaattela M., Hoffmann E., Pedersen S. Hsp70 protects fibrosarcoma cells against shrinkage-induced programmed cell death via mechanism independent of effects on cell volume-regulatory membrane transport proteins. Pflugers. Arch. 2004; 449: 175–185
  • Rich I., Worthington-White D., Garden O., Musk P. Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na+/H+ exchanger. Blood 2000; 95: 1427–1434
  • Thangarayu M., Sharma K., Liu D., Shen S., Srikant C. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. Cancer. Res. 1999; 59: 1649–1654
  • Matsuyama S., Llopis J., Deveraux Q., Tsien R., Reed J. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell. Biol. 2000; 2: 318–325
  • Bortner C., Cidlowski J. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am. J. Physiol. 1996; 271: C950–C961
  • Friis M., Friborg C., Schneider L., Nielsen M., Lambert I., Christensen S., et al. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J. Physiol. 2005; 567: 427–443
  • Pedersen S., O’Donnell M., Anderson S., Cala P. Electroneutral Na +transport in health and disease: role Na+/H+ exchange and a Na+, K+, 2Cl- cotransport. Am. J. Physiol. Regul. Integr. Comb. Physiol. 2006; 291: R1–25
  • Askenasy N., Vivi A., Tassini M., Navon G. The relation between cellular sodium, pH and volumes and the activity of Na+/H+ antiport during hypothermic ischemia: multinuclear NMR studies of rat hearts. J. Mol. Cell. Cardiol. 1996; 28: 589–601
  • Kintner D., Su G., Lenart B., Ballard A., Meyer J., Ng L., et al. Increased tolerance to oxygen and glucose deprivation in astrocytes from Na+/H +exchanger isoform 1 null mice. Am. J. Physiol. Cell. Physiol. 2004; 287: C12–C21
  • Otani H., Uchiyama T., Yamamura T., Nakao Y., Hattori R., Ninomiya H., et al. Effects of Na+/H +exchange inhibitor cariporide (HOE 642) on cardiac function and cardiomyocyte cell death in rat ischemic-reperfused heart. Clin. Exp. Pharmacol. Physiol. 2000; 27: 387–393
  • Chakrabarti S., Hoque A., Karmazyn M. A rapid ischemia-induced apoptosis in isolated rat hearts and its attenuation by the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). J. Mol. Cell. Cardiol. 1997; 29: 3169–3174
  • Teshima Y., Akao M., Jones S., Marban E. Cariporide, a selective Na+/H +exchange inhibitor, inhibits the mitochondrial death pathway. Circulation 2003; 27: 729–742
  • Stock C., Schwab A. Role of the Na+/H+ exchanger NHE1 in cell migration. Acta. Physiol. 2006; 187: 149–157
  • Mitchison T., Cramer L. Actin-based cell motility and cell locomotion. Cell 1996; 84: 371–379
  • Diez S., Gerisch G., Anderson K., Miller-Taubenberger A., Bretschneider T. Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc. Natl. Acad. Sci. 2005; 102: 7601–7606
  • Bretscher M., Aguado-Velasco C. Membrane traffic during cell locomotion. Curr. Opin. Cell. Biol. 1998; 10: 537–541
  • Beningo K., Dembo M., Kaverina I., Small J., Wang Y. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell. Biol. 2001; 153: 881–887
  • Jalali S., Del Pozo M., Chen K., Miao H., Li Y., Schwartz M., et al. Integrin-mediated mechanotranduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. 2001; 98: 1042–1046
  • Webb D., Parsons J., Horwitz A. Adhesion assembly, disassembly and turnover in migrating cell-over and over and over again. Nat. Cell. Biol. 2002; 4: E97–E100
  • Kostidou E., Koliakos G., Alamdari D., Paletas K., Tsapas A., Kaloyianni M. Enhanced laminin carbonylation by monocytes in diabetes mellitus. Clin. Bioch. 2007; 40: 671–679
  • Koliakos G., Trachana V., Gaitatzi M., Dimitriadou A. Phosphorylation of laminin-1 by protein kinase C. Mol. Cells 2001; 11: 179–185
  • Verfaillie C., Benis A., Iida J., McGlave P., McCarthy J. Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: cooperation between the integrin alpha2beta1 and the CD44 adhesion receptor. Blood 1994; 84: 1802–1811
  • Stock C.G.B., Hauck C.R., Arnold H., Mally S., Eble J.A., Dieterich P., Schwab A. Migration of human melanoma cells depends on extracellular pH and Na+/H +exchange. J. Physiol. 2005; 567: 225–238
  • Reshkin S., Bellizzi A., Albarani V., Guerra L., Tommasino M., Paradiso A., et al. Phosphoinositide 3-kinase is involved in th tumor-specific activation of human breast cancer cell Na+/H+ exchange, motility, and invasion induced by serum deprivation. J. Biol. Chem. 2000; 275: 5361–5369
  • McHardy L., Sinotte R., Troussard A., Sheldon C., Church J., et al. The tumor invasion inhibitor dihydromotuporamine C activates Rho, remodels stress fibers and focal adhesions, and stimulates sodium-proton exchange. Cancer Res. 2004; 64: 1468–1474
  • Paradiso A., Cardone R., Bellizzi A., Bagorda A., et al. The Na+/H +exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells. Breast Cancer Res. 2004; 6: R616–R628
  • Bussolino F., Wang J., Turrini F., Alessi D., et al. Stimulation of Na+/H +exchanger in human endothelial cells activated by granulocyte-macrophage-colony-stimulating factor. Evidence for a role in proliferation and migration. J. Biol. Chem. 1989; 264: 18284–18287
  • Roesengren S., Henson P., Worthen G. Migration associated volume changes in neutrophils facilitate the migratory process in vitro. Am. J. Physiol. 1994; 267: C1623–C1632
  • Denker S., Barber D. The changing face of Na/H exchanger. NHE1: structure, regulation and cellular actions. Annu. Rev. Pharmacol. Toxicol. 2002; 42: 527–552
  • Denker S., Barber D. Cell migration requires both ion translocation and cytoskeletal anchoring by them Na-H exchanger NHE1. J. Cell Biol. 2002; 159: 1087–1096
  • Yan W., Nehrke K., Choi J., Barber D. The Nck interactive kinase (NIK) phosphorylates NHE1 and regulates NHE1 activation by platelet-derived growth factor. J. Biol. Chem. 2001; 276: 31349–31356
  • Aharonovitz O., Zaum H., Balla T., York J., Orlowski J., Grinstein S. Intracellular pH regulation by NHE requires phosphatidylinositol 4,5 bisphospate. J. Cell. Biol. 2000; 150: 213–224
  • Pang T., Su X., Wakabayashi S., Shigekawa M. Calcineurin homologous protein as an essential cofactor for NHE. J. Biol. Chem. 2001; 276: 17367–17372
  • Rohatgi R., Nollau P., Ho H., Kirschner M., Mayer B. Nck and phospatidylinositol 3.4 bisphosphate synergistically activate actin polymerization through the N-WASP Arp2/3 pathway. J. Biol. Chem. 2001; 276: 26448–26452
  • Lehoux S., Abe J., Florian J., Berk B. 14–3-3 binding to NHE isoform 1 is associated with serum-dependent activation of NHE1. J. Biol. Chem. 2001; 276: 15794–15800
  • Silva N., Haworth R., Singh D., Fliegel L. The carbonyl-terminal region of NHHE1 interacts with mammalin heat shock protein. Biochemistry 1995; 34: 10412–10420
  • Li X., Alvarez B., Casey J., Reithmeier R., Fliegel L. Carbonic anhydrase II binds to and anhances the activity of NHE1. J. Biol. Chem. 2002; 277: 36085–36091
  • Coupaye-Gerard B., Bookstein C., Duncan P., Chen X., Smith P., Musch M., et al. Biosynthesis and cell surface delivery of NHE1 isoform in A6 cells. Am. J. Physiol Cell Physiol. 1996; 271: C2951–C2959
  • Grinstein S., Woodside M., Waddell T., Downey G., Orlowski J., Poyssegour J., et al. Focal localization of NHE1 isoform: effects on intracellular pH. EMBO J 1993; 12: 5209–5218
  • Baumgartner M., Patel H., Barber D. NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am. J. Physiol. Cell Physiol. 2004; 287: C844–C850
  • Cingolani H., Perez N., Aiello E., Camilion de Hurtado M. Intracellular signaling following myocardial stretch: an autocrine/paracrine loop. Reg. Pept. 2005; 128: 211–220
  • Allen D., Xiao X. Role of cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc. Res. 2003; 57: 934–941
  • Stagg M., Terracciano C. Less Na+/H+ exchanger to treat heart failure: a simple solution for a complex problem. Cardiovasc. Res. 2005; 65: 10–12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.