282
Views
40
CrossRef citations to date
0
Altmetric
Original

Biological and Pathobiological Functions of Gelatinase Dimers and Complexes

, , , &
Pages 180-184 | Published online: 06 Aug 2009

REFERENCES

  • Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006; 69: 562–573
  • Cawston T. E., Wilson A. J. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract. Res. Clin. Rheumatol. 2006; 20: 983–1002
  • Van Den Steen P. E., Opdenakker G., Wormald M. R., Dwek R. A., Rudd P. M. Matrix remodelling enzymes, the protease cascade and glycosylation. Biochim. Biophys. Acta. 2001; 1528: 61–73
  • Bjorklund M., Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta. 2005; 1755: 37–69
  • Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J. Biol. Chem. 1985; 260: 2493–2500
  • Goldberg G. I., Strongin A., Collier I. E., Genrich L. T., Marmer B. L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 1992; 267: 4583–4591
  • Triebel S., Blaser J., Reinke H., Tschesche H. A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS. Lett. 1992; 314: 386–388
  • Kjeldsen L., Johnsen A. H., Sengelov H., Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 1993; 268: 10425–10432
  • Olson M. W., Bernardo M. M., Pietila M., Gervasi D. C., Toth M., Kotra L. P., Massova I., Mobashery S., Fridman R. Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9. Differential rates for activation by stromelysin 1. J. Biol. Chem. 2000; 275: 2661–2668
  • Winberg J. O., Kolset S. O., Berg E., Uhlin-Hansen L. Macrophages secrete matrix metalloproteinase 9 covalently linked to the core protein of chondroitin sulphate proteoglycans. J. Mol. Biol. 2000; 304: 669–680
  • Crabbe T., Ioannou C., Docherty A. J. Human progelatinase A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. Eur. J. Biochem. 1993; 218: 431–438
  • Ilda J., Wilhelmson K. L., Ng J., Lee P., Morrison C., Tam E., Overall C. M., McCarthy J. B. Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochem. J. 2007; 403: 553–563
  • Cha H., Kopetzki E., Huber R., Lanzendorfer M., Brandstetter H. Structural basis of the adaptive molecular recognition by MMP9. J. Mol. Biol. 2002; 320: 1065–1079
  • Van Den Steen P. E., Van Aelst I., Hvidberg V., Piccard H., Fiten P., Jacobsen C., Moestrup S. K., Fry S., Royle L., Wormald M. R., Wallis R., Rudd P. M., Dwek R. A., Opdenakker G. The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J. Biol. Chem. 2006; 281: 18626–18637
  • Tschesche H., Zolzer V., Triebel S., Bartsch S. The human neutrophil lipocalin supports the allosteric activation of matrix metalloproteinases. Eur. J. Biochem. 2001; 268: 1918–1928
  • Bannikov G. A., Mattoon J. S., Abrahamsen E. J., Premanandan C., Green-Church K. B., Marsh A. E., Lakritz J. Biochemical and enzymatic characterization of purified covalent complexes of matrix metalloproteinase-9 and haptoglobin released by bovine granulocytes in vitro. Am. J. Vet. Res. 2007; 68: 995–1004
  • Ray S., Lukyanov P., Ochieng J. Members of the cystatin superfamily interact with MMP-9 and protect it from autolytic degradation without affecting its gelatinolytic activities. Biochim. Biophys. Acta. 2003; 1652: 91–102
  • Winberg J. O., Berg E., Kolset S. O., Uhlin-Hansen L. Calcium-induced activation and truncation of promatrix metalloproteinase-9 linked to the core protein of chondroitin sulfate proteoglycans. Eur. J. Biochem. 2003; 270: 3996–4007
  • Malemud C. J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. Biosci. 2006; 11: 1696–1701
  • Munesue S., Yoshitomi Y., Kusano Y., Koyama Y., Nishiyama A., Nakanishi H., Miyazaki K., Ishimaru T., Miyaura S., Okayama M., Oguri K. A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J. Biol. Chem. 2007; 282: 28164–28174
  • Yu Q., Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 1999; 13: 35–48
  • Hemdahl A. L., Gabrielsen A., Zhu C., Eriksson P., Hedin U., Kastrup J., Thoren P., Hansson G. K. Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 136–142
  • Zhang H., Xu L., Xiao D., Xie J., Zeng H., Wang Z., Zhang X., Niu Y., Shen Z., Shen J., Wu X., Li E. Upregulation of neutrophil gelatinase-associated lipocalin in oesophageal squamous cell carcinoma: significant correlation with cell differentiation and tumour invasion. J. Clin. Pathol. 2007; 60: 555–561
  • Gupta K., Shukla M., Cowland J. B., Malemud C. J., Haqqi T. M. Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9. Arthritis. Rheum. 2007; 56: 3326–3335
  • Øynebråten I., Hansen B., Smedsrød B., Uhlin-Hansen L. Serglycin secreted by leucocytes is efficiently eliminated from the circulation by sinusoidal scavanger endothelial cells in the liver. J Leukoc. Biol. 2000; 67: 183–188
  • Bourguignon L. Y., Gunja-Smith Z., Iida N., Zhu H. B., Young L. J., Muller W. J., Cardiff R. D. CD44v(3,8–10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J. Cell. Physiol. 1998; 176: 206–215
  • Toyama-Sorimachi N., Kitamura F., Habuchi H., Tobita Y., Kimata K., Miyasaka M. Widespread expression of chondroitin sulfate-type serglycins with CD44 binding ability in hematopoietic cells. J. Biol. Chem. 1997; 272: 26714–26719
  • Theocharis A. D., Seidel C., Borset M., Dobra K., Baykov V., Labropoulou V., Kanakis I., Dalas E., Karamanos N. K., Sundan A., Hjerpe A. Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro. J. Biol. Chem. 2006; 281: 35116–35128
  • Zhou J., Zhu P., Jiang J. L., Zhang Q., Wu Z. B., Yao X. Y., Tang H., Lu N., Yang Y., Chen Z. N. Involvement of CD147 in overexpression of MMP-2 and MMP-9 and enhancement of invasive potential of PMA-differentiated THP-1. BMC Cell Biol. 2005; 6: 25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.