77
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Uniform Partial Dissolution of Bone Mineral by Using Fluoride and Phosphate Ions Combination

, &
Pages 328-342 | Received 14 Feb 2008, Accepted 12 May 2008, Published online: 06 Aug 2009

REFERENCES

  • Currey J.D. Three analogies to explain the mechanical properties of bone. Biorheology 1964; 2: 1–10
  • Currey J.D. The mechanical consequences of variation in the mineral content of bone. J. Biomech. 1969; 2: 1–11
  • Bundy K.J. Composite material models for bone. Bone Mechanics, S.C. Cowin. CRC Press, Boca Raton, FC 1989; 197–210
  • Carter D.R., Spengler D.M. Mechanical properties and composition of cortical bone. Clin. Orthopaed. Related Res. 1978; 135: 192–217
  • Legros R., Balmain N., Bonel G. Age-related changes in mineral of rat and bovine cortical bone. Calcified Tis. Inter. 1987; 41: 137–144
  • Kim H.M., Rey C., Glimcher M.J. Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J. Bone Miner. Res. n.s. 1995; 10: 1589–1601
  • Rey C., Miquel J.I., Facchini L., Legrand A.P., Glimcher M.J. Hydroxyl groups in bone mineral. Bone 1995; 16: 583–586
  • Currey J.D. The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone. J. Biomech. 1975; 8: 81–86
  • Carter D.R., Hayes W.C. Bone compressive strength: the influence of density and strain rate. Science 1976; 194: 1174–1176
  • Currey J.D. Mechanical properties of bone tissues with greatly differing functions. J. Biomech. 1979; 12: 313–319
  • Gilmore R.S., Katz J.L. Elastic properties of apatites. J. Mat. Sci. 1982; 17: 1131–1141
  • Bundy K.J. Determination of mineral-organic bonding effectiveness in bone-theoretical considerations. Ann. Biomed. Eng. 1985; 13: 119–135
  • Wagner H.D., Weiner S. On the relationship between the microstructure of bone and its mechanical stiffness. J. Biomech. 1992; 25: 1311–1320
  • Martin R.B., Boardman D.L. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J. Biomech. 1993; 26: 1047–1054
  • Bowman S.M., Zeind J., Gibson L.J., Hayes W.C., McMahon T.A. The tensile behavior of demineralized bovine cortical bone. J. Biomech. 1996; 29: 1497–501
  • Currey J.D. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. J. Biomech. 1988; 21: 131–139
  • Burstein A.H., Zika J.M., Heiple K.G., Klein L. Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Joint Surg. 1975; 57-A: 956–960
  • Sasaki N., Yoshikawa M. Stress relaxation in native and EDTA-treated bone as a function of mineral content. J. Biomech. 1993; 26: 77–83
  • Broz J.J., Simske S.J., Greenberg A.R. Material and compositional properties of selectively demineralized cortical bone. J. Biomech. 1995; 28: 1357–1368
  • Shah K.M., Goh J.C.H., Karunanithy R., Low S.L., De S.D., Bose K. Effects of decalcification on bone mineral content and bending of feline femur. Calcified Tis. Inter. 1995; 56: 78–82
  • DePaula C.A., Abjornson C., Pan Y., Kotha S.P., Koike K., Guzelsu N. Changing the structurally effective mineral content of bone with in vitro fluoride treatment. J. Biomech. 2002; 35: 355–361
  • Kotha S.P., Walsh W.R., Pan Y., Guzelsu N. Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content. Biomed. Mat. Eng. 1998; 8: 321–334
  • Kotha S.P., DePaula C.A., Koike K., Pan Y., Ohno M., Abjornson C., Rangarajan S., Guzelsu N. Increased ash content and estimation of dissolution from chemical changes due to in-vitro fluoride treatment. Connec. Tis. Res. 2002; 43: 8–21
  • Christoffersen J., Christoffersen M.R., Arends J., Leonardsen E.S. Formation of phosphate containing calcium fluoride at the expense of enamel, hydroxyapatite and fluorapatite. Caries Res. 1995; 29: 223–230
  • Kotha S.P., Guzelsu N. Effect of bone mineral content on the tensile properties of cortical bone: experiments and theory. J. Biomech. Eng. 2003; 125: 785–793
  • Ten Cate J.M. In vitro studies on the effects of fluoride an de- and remineralization. J. Dent. Res. 1990; 69(Spec. issue)614–619
  • White D.J., Nancollas G.H. Physical and chemical considerations of the role of firmly and loosely bound fluoride in caries prevention. J. Dent. Res. 1990; 69(spec issue)587–594
  • Rey C., Collins B., Goehl T., Dickson I.R., Glimcher M.J. The carbonate environment in bone mineral: a resolution-enhanced fourier transform infrared spectroscopy study. Calcified Tis. Inter. 1989; 45: 157–164
  • Abjornson C., DePaula C.A., Kotha S., Johnson L., Guzelsu N. Crystallographic study of cortical bone. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society, , et al, 2000; 746
  • Gustafson M.B., Martin R.B., Gibson V., Storms D.H., Stover S.M., Gibeling J., Griffin L. Calcium buffering is required to maintain bone stiffness in saline solution. J. Biomech. 1996; 29: 1191–1194
  • Li B., Aspden R.M. Mechanical and material properties of the subchondral bone plate from the femora head of patients with osteoarthritis or osteoporosis. Ann. Rheum. Dis. 1997; 56: 247–254
  • Katz J. L., Meunier A. Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae. J. Biomech. Eng. 1993; 115: 543–548
  • Hasegawa K., Turner C.H., Recker R.R., Wu E., Burr D.B. Elastic properties of osteoporotic bone measured by scanning acoustic microscopy. Bone 1995; 16: 85–90
  • Walsh W.R., Guzelsu N. Electrokinetic behavior of intact wet bone: compartmental model. J. Orthopaed. Res. 1991; 9: 683–692
  • Sarkar B.C.R., Chauhan U.P.S. A new method for determining micro quantities of calcium in biological materials. Anal. Chem. 1967; 20: 155–166
  • American Society for Testing and Materials. Standard test method for tensile properties of plastics. Annual Book of ASTM standards, Vol. 08.01 Plastics (I): D256-D2343, , et al. PAY American Society for Testing and Materials, West Conshohocken 1998; 46–58
  • Carter D.R., Caler W.E., Spengler D.M., Frankel V.H. Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. J. Biomech. 1981; 14: 461–470
  • Abram A.C., Keller T.S., Spengler D.M. The effects of simulated weightlessness on bone biomechanical and biochemical properties in the maturing rat. J. Biomech. 1988; 21: 755–767
  • American Society for Testing and Materials. Standard test methods for fluoride Ion in water. Annual Book of ASTM standards: Water and Environmental Technology. vol. 11.01 Water(I), , et al. American Society for Testing and Materials, West Conshohocken, PA 1998; 101–105
  • Lin J., Raghavan S., Fuerstenau D.W. The adsorption of fluoride ions by hydroxyapatite from aqueous solution. Colloids Surfaces 1981; 3: 357–370
  • Tung M.S. Surface properties of hydroxyapatite in fluoride solution. Colloids Surfaces 1983; 6: 283–285
  • Larsen M.J., Jensen S.J. Experiments on the initiation of calcium fluoride formation with reference to the solubility of dental enamel and brushite. Arch. Oral Biol. 1994; 39: 23–27
  • Currey J.D. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J. Biomech. 2004; 37: 549–556
  • Camacho N.P., Hou L., Toledano T.R., Ilg W.A., Brayton C.F., Raggio C.L., Root L., Boskey A.L. The material basis for reduced mechanical properties in oim mice bones. J. Bone Min. Res. 1999; 14: 264–272
  • Coats A.M., Zioupos P., Aspden R.M. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcified Tis. Inter. 2003; 73: 66–71
  • Grabner B., Landis W.J., Roschger P., Rinnerthaler S., Peterlik H., Klaushofer K., Fratzl P. Age-and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Bone 2001; 29: 453–457
  • Hanscom D.A., Winter R.B., Lutter L., Lonstein J.E., Bloom B.A., Bradford D.S. Osteogenesis imperfecta. Radiographic classification, natural history, and treatment of spinal deformities. J. Bone Joint Surg. 1992; 74-A: 598–616
  • Landis W.J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituents mineral crystals in their organic matrix. Bone 1995; 16: 533–544
  • Li B., Marshall D., Roe M., Aspden R.M. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J. Anatomy 1999; 195: 101–110
  • Mkukuma L.D., Imrie C.T., Skakle J.M.S., Hukins D.W.L., Aspden R.M. Thermal stability and structure of cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis. Ann. Rheum. Dis. 2005; 64: 222–225
  • Plotkin H. Syndromes with congenital brittle bones. BMC Pediatr. 2004; 4: 16, (doi:10.1186/1471–2431-4–16)
  • Rauch F., Glorieux F.H. Osteogenesis imperfecta. Lancet 2004; 363: 1377–1385
  • Viguet-Carrin S., Garnero P., Delmas P.D. The role of collagen in bone strength. Osteopor. Inter. 2006; 17: 319–336

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.