187
Views
14
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Modification of the Composition of Articular Cartilage Collagen Fibrils with Increasing Age

, , , &
Pages 374-382 | Received 11 Oct 2007, Accepted 04 Apr 2008, Published online: 06 Aug 2009

REFERENCES

  • Mendler M., Eich-Bender S.G., Vaughan L., Winterhalter K.H., Bruckner P. Cartilage contains mixed fibrils of collagen types II, IX and XI. J. Cell Biol. 1989; 108: 191–197
  • Wu J-J., Eyre D.R. Structural analysis of cross-linking domains in cartilage type XI collagen. Insights on polymeric assembly. J. Biol. Chem. 1995; 270: 18865–18870
  • Blaschke U.K., Eikenberry E.F., Hulmes D.J., Galla H.J., Bruckner P. Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J. Biol. Chem. 2000; 275: 10370–10378
  • Vaughan-Thomas A., Young R.D., Phillips A.C., Duance V.C. Characterization of collagen type XI collagen-glycosaminoglycan interactions. J. Biol. Chem. 2001; 276: 5303–5309
  • Olsen B.R. Collagen IX. Int. J. Biochem. Cell Biol. 1997; 29: 555–558
  • Vaughan L., Mendler M., Huber S., Bruckner P., Winterhalter K.H., Irwin M.I., Mayne R. D-periodic distribution of collagen type IX along cartilage fibrils. J. Cell Biol. 1988; 106: 991–997
  • Wu J-J., Woods P.E., Eyre D.R. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J. Biol. Chem. 1992; 267: 23007–23014
  • Eyre D.R., Wu J-J., Fernandes R.J., Pietka T.A., Weis M.A. Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network. Biochem. Soc. Trans. 2002; 30(Pt 6)893–899
  • Miles C.A., Knott L., Sumner I.G., Bailey A.J. Differences between the thermal stabilities of the three triple-helical domains of type IX collagen. J. Mol. Biol. 1998; 277(1)135–44
  • Eyre D.R., Pietka T., Weis M.A., Wu J-J. Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage. J. Biol. Chem. 2004; 279: 2568–2574
  • Kapyla J., Jaalinoja J., Tulla M., Ylostalo J., Nissinen L., Viitasalo T., Vehvilainen P., et al. The fibril-associated collagen IX provides a novel mechanism for cell adhesion to cartilaginous matrix. J. Biol. Chem. 2004; 279: 51677–51687
  • Holden P., Meadows R.S., Chapman K.L., Grant M.E., Kadler K.E., Briggs M.D. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. J. Biol. Chem. 2001; 276: 6046–6055
  • Mann H.H., Ozbek S., Engel J., Paulsson M., Wagener R. Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J. Biol. Chem. 2004; 279: 25294–25298
  • Budde B., Blumbach K., Ylostalo J., Zaucke F., Ehlen H.W., Wagener R., Ala-Kokko L., et al. Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol. Cell. Biol. 2005; 25: 10465–10478
  • Callender P.E., Mason D.J., Duance V.C. Identification of a type IX collagen; interaction with fibronectin. Bone 30 Suppl, 25S, , et al. (Abst) 9th Workshop of Bone and Cartilage in Health and Disease, Davos, Switzerland 2002
  • Pihlajamaa T., Lankinen H., Ylostalo J., Valmu L., Jaalinoja J., Zaucke F., Spitznagel L., et al. Characterization of recombinant amino-terminal NC4 domain of human collagen IX: interaction with glycosaminoglycans and cartilage oligomeric matrix protein. J. Biol. Chem. 2004; 279: 24265–24273
  • Maroudas A., Palla G., Gilav E. Racemisation of aspartic acid in human articular cartilage. Connect. Tis. Res. 1992; 28: 161–169
  • Hollander A.P., Heathfield T.F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A.R. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 1994; 93: 1722–1732
  • Billinghurst R.C., Dahlberg L., Ionescu M., Reiner A., Bourne R., Rorabeck C., Mitchell P., et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 1997; 99: 1534–1545
  • Bishop P.N., Holmes D.F., Kadler K.E., McLeod D., Bos K.J. Age-related changes on the surface of vitreous collagen fibrils. Invest. Ophthalmol. Vis. Sci. 2004; 45: 1041–1046
  • Okada Y., Konomi H., Yada T., Kimada K., Nagase H. Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells. FEBS Lett. 1989; 244: 473–476
  • Wu J-J., Lark M.W., Chun L.E., Eyre D.R. Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J. Biol. Chem. 1991; 266: 5625–5628
  • Gadher S.J., Eyre D.R., Duance V.C., Wotton S.F., Heck L.W., Schmid T.M., Woolley D.E. Susceptibility of cartilage collagens type II, IX, X, and XI to human synovial collagenase and neutrophil elastase. Eur. J. Biochem. 1988; 175: 1–7
  • Maciewicz R.A., Wotton S.F., Etherington D.J., Duance V.C. Susceptibility of the cartilage collagens types II, IX and XI to degradation by the cysteine proteinases, cathepsins B and L. FEBS Lett. 1990; 269: 189–193
  • Hickery M.S., Bayliss M.T., Dudhia J., Lewthwaite J.C., Edwards J.C., Pitsillides A.A. Age-related changes in the response of human articular cartilage to IL-1alpha and TGF beta: chondrocytes exhibit a diminished sensitivity to TGF beta. J. Biol. Chem. 2003; 278: 53063–53071
  • Duance V.C., Shimokomaki M., Bailey A.J. Immunofluorescence localization of type-M collagen in articular cartilage. Biosci. Rep. 1982; 2: 223–227
  • Douglas S.P., Jenkins J.M., Kadler K. Collagen IX: evidence for a structural association between NC4 domains in cartilage and a novel cleavage site in the alpha 1(IX) chain. Matrix Biology. 1998; 16: 497–505
  • Young R.D., Vaughan-Thomas A., Wardale R.J., Duance V.C. Type II collagen deposition in cruciate ligament precedes osteoarthritis in the guinea pig knee. Osteoarth. Cart. 2002; 10: 420–428
  • Richardson S.M., Curran J.M., Chen R., Vaughan-Thomas A., Hunt J.A., Freemont A.J., Hoyland J.A. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic acid (PLLA) scaffolds. Biomaterials 2006; 27: 4069–4078
  • Berg R.A. Determination of 3- and 4-hydroxyproline. Meth. Enzymol. 1982; 82: 372–398
  • Bolton M.C., Dudhia J., Bayliss M.T. Quantification of aggrecan and link-protein mRNA in human articular cartilage of different ages by competitive reverse transcriptase-PCR. Biochem. J. 1996; 319: 489–498
  • Diab M., Wu J-J., Eyre D.R. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites. Biochem. J. 1996; 314: 327–332
  • Wachtel E., Maroudas A., Schneiderman R. Age-related changes in collagen packing of human articular cartilage. Biochim. Biophys. Acta. 1995; 1243: 243–239
  • Bank R., Bayliss M.T., Lafeber F., Maroudas A., Tekoppele J.M. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem. J. 1998; 330: 345–351
  • Hagg R., Bruckner P., Hedbom E. Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J. Cell. Biol. 1998; 142: 285–294
  • Roos H., Adalberth T., Dahlberg L., Lomander L.S. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarth. Cart. 1995; 3: 261–267
  • Wotton S.F., Duance V.C., Fryer P.R. Type IX collagen: a possible function in articular cartilage. FEBS Lett. 1988; 234: 79–82
  • Hagg R., Hedbom E., Möllers U., Aszódi A., Fässler R., Bruckner P. Absence of the alpha1(IX) chain leads to a functional knock-out of the entire collagen IX protein in mice. J. Biol. Chem. 1997; 272: 20650–20654
  • Nakata K., Ono K., Miyazaki J., Olsen B.R., Muragaki Y., Adachi E., Yamamura K., Kimura T. Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing alpha 1(IX) collagen chains with a central deletion. Proc. Natl. Acad. Sci. USA 1993; 90: 2870–2874
  • Fassler R., Schnegelsberg P.N., Dausman J., Shinya T., Muragaki Y., McCarthy M.T., Olsen B.R., Jaenisch R. Mice lacking alpha 1 (IX) collagen develop non-inflammatory degenerative joint disease. Proc. Natl. Acad. Sci. USA 1994; 91: 5070–5074
  • Hu K., Xu L., Cao L., Flahiff C.M., Brussiau J., Ho K., Setton L.A., et al. Pathogenesis of osteoarthritis-like changes in the joints of mice deficient in type IX collagen. Arth. Rheum. 2006; 54: 2981–2900
  • Briggs M.D., Chapman K.L. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum. Mutat. 2002; 19: 465–478
  • Mustafa Z., Chapman K., Irven C., Carr A.J., Clipsham K., Chitnavis J., Sinsheimer J.S., et al. Linkage analysis of candidate genes as susceptibility loci for osteoarthritis-suggestive linkage of COL9A1 to female hip osteoarthritis. Rheumatology (Oxford) 2000; 39: 299–306
  • Ikeda T., Mabuchi A., Fukuda A., Kawakami A., Ryo Y., Yamamoto S., Miyoshi K., et al. Association analysis of single nucleotide polymorphisms in cartilage-specific collagen genes with knee and hip osteoarthritis in the Japanese population. J. Bone Miner. Res. 2002; 17: 1290–1296
  • Sivakumaran T.A., Resendes B.L., Robertson N.G., Giersch A.B.S., Morton C.C. Characterisation of an abundant COL9A1 transcript in the cochlea with a novel 3’ UTR: expression studies and detection of miRNA target sequence. JARO 2006; 7: 160–172

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.