637
Views
51
CrossRef citations to date
0
Altmetric
Original

Glutaraldehyde Cross-Linking of Tendon—Mechanical Effects at the Level of the Tendon Fascicle and Fibril

, , , , , , & show all
Pages 211-222 | Received 01 Jul 2008, Accepted 07 Nov 2008, Published online: 11 Sep 2009

REFERENCES

  • Fukashiro S., Komi P. V., Jarvinen M., Miyashita M. In vivo Achilles tendon loading during jumping in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1995; 71: 453–8
  • Finni T., Komi P. V., Lepola V. In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur. J. Appl. Physiol. 2000; 83: 416–26
  • Kastelic J., Galeski A., Baer E. The multicomposite structure of tendon. Connect. Tissue Res. 1978; 6: 11–23
  • Kannus P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 2000; 10: 312–20
  • Scott J. E. Proteoglycan collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects. Int. J. Biol. Macromol. 1991; 13: 157–61
  • Haraldsson B. T., Aagaard P., Qvortrup K., Bojsen-Moller J., Krogsgaard M., Koskinen S., et al. Lateral force transmission between human tendon fascicles. Matrix Biol. 2008; 27: 86–95
  • Butler D. L., Grood E. S., Noyes F. R., Zernicke R. F. Biomechanics of ligaments and tendons. Exerc. Sport Sci. Rev. 1978; 6: 125–81
  • Mosler E., Folkhard W., Knorzer E., Nemetschek-Gansler H., Nemetschek T., Koch M. H. Stress-induced molecular rearrangement in tendon collagen. J. Mol. Biol. 1985; 182: 589–96
  • Sasaki N., Odajima S. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 1996; 29: 1131–6
  • Sasaki N., Odajima S. Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique. J. Biomech. 1996; 29: 655–8
  • Fratzl P., Misof K., Zizak I., Rapp G., Amenitsch H., Bernstorff S. Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 1998; 122: 119–22
  • Puxkandl R., Zizak I., Paris O., Keckes J., Tesch W., Bernstorff S., et al. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos. Trans. R Soc. Lond. B Biol. Sci. 2002; 357: 191–7
  • Bailey A. J., Paul R. G., Knott L. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 1998; 106: 1–56
  • Misof K., Landis W. J., Klaushofer K. Collagen from the Osteogenesis Imperfect Mouse Model (OIM) Shows Reduced Resistance Against Tensile Stress. J. Clin. Invest. 1997; 100: 40–5
  • Haut R. C. The effect of a lathyritic diet on the sensitivity of tendon to strain rate. J. Biomech. Eng. 1985; 107: 166–74
  • Andreassen T. T., Seyer-Hansen K., Bailey A. J. Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. Biochim. Biophys. Acta. 1981; 677: 313–7
  • Reddy G. K. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon. Exp. Diabesity Res. 2004; 5: 143–53
  • Chuang S. Y., Odono R. M., Hedman T. P. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clin. Biomech. (Bristol, Avon). 2007; 22: 14–20
  • Cornwell K. G., Lei P., Andreadis S. T., Pins G. D. Crosslinking of discrete self-assembled collagen threads: effects on mechanical strength and cell-matrix interactions. J. Biomed. Mater. Res. A. 2007; 80: 362–71
  • Lee J. M., Haberer S. A., Boughner D. R. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium. J. Biomed. Mater. Res. 1989; 23: 457–75
  • Damink L. O., Dijkstra P. J., van luyn J. A., Van Wachem P. B., Nieuwenhuis P., Feijen J. Gluataraldehyde as a crosslinking agent for collagen based biomaterials. J. Mater. Sci. Mat. Med. 1995; 6: 460–472
  • Lee J. M., Boughner D. R., Courtman D. W. The glutaraldehyde-stabilized porcine aortic valve xenograft. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material. J. Biomed. Mater. Res. 1984; 18: 79–98
  • Parry D. A., Craig A. S., Barnes G. R. Tendon and ligament from the horse: an ultrastructural study of collagen fibrils and elastic fibres as a function of age. Proc. R Soc. Lond. B Biol. Sci. 1978; 203: 293–303
  • Bowes J. H., Cater C. W. The interaction of aldehydes with collagen. Biochim. Biophys. Acta. 1968; 168: 341–52
  • Simionescu A., Simionescu D., Deac R. Lysine-enhanced glutaraldehyde crosslinking of collagenous biomaterials. J. Biomed. Mater. Res. 1991; 25: 1495–505
  • Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997; 18: 95–105
  • Miles C. A., Avery N. C., Rodin V. V., Bailey A. J. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J. Mol. Biol. 2005; 346: 551–6
  • Jorge-Herrero E., Fernandez P., Turnay J., Olmo N., Calero P., Garcia R., et al. Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials. 1999; 20: 539–45
  • Gutsmann T., Fantner G. E., Kindt J. H., Venturoni M., Danielsen S., Hansma P. K. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophys. J. 2004; 86: 3186–93
  • Domke J., Radmacher M. Investigation of the mechanical properties of thin polymeric films. Langmuir. 1998; 14: 3320–3325
  • Wenger P. E., Bozec L., Horton M., Mesquida P. Mechanical properties of collagen fibrils. Biophys. J. 2007; 93: 1255–1263
  • Heim A. J., Koob T. J., Matthews W. G. Low strain nanomechanics of collagen fibrils. Biomacromolecules. 2007; 8: 3298–3301
  • Van Der Rijt J. A., Van Der Werf K. O., Bennink M. L., Dijkstra P. J., Feijen J. Micromechanical testing of individual collagen fibrils. Macromol. Biosci. 2006; 6: 697–702
  • Haraldsson B. T., Aagaard P., Krogsgaard M., Alkjaer T., Kjaer M., Magnusson S. P. Region-specific mechanical properties of the human patella tendon. J. Appl. Physiol. 2005; 98: 1006–12
  • Bozec L., Horton M. Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy. Biophys. J. 2005; 88: 4223–31
  • Nimni M. E., Cheung D., Strates B., Kodama M., Sheikh K. Chemically modified collagen: a natural biomaterial for tissue replacement. J. Biomed. Mater. Res. 1987; 21: 741–71
  • Sung H. W., Chang Y., Chiu C. T., Chen C. N., Liang H. C. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 1999; 47: 116–26
  • Bedran-Russo A. K., Pereira P. N., Duarte W. R., Drummond J. L., Yamauchi M. Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J. Biomed. Mater. Res. B Appl. Biomater. 2007; 80: 268–72
  • Pereira C. A., Lee J. M., Haberer S. A. Effect of alternative crosslinking methods on the low strain rate viscoelastic properties of bovine pericardial bioprosthetic material. J. Biomed. Mater. Res. 1990; 24: 345–61
  • Sung H. W., Chang W. H., Ma C. Y., Lee M. H. Crosslinking of biological tissues using genipin and/or carbodiimide. J. Biomed. Mater. Res. A. 2003; 64: 427–38
  • Andreassen T. T., Oxlund H., Danielsen C. C. The influence of non-enzymatic glycosylation and formation of fluorescent reaction products on the mechanical properties of rat tail tendons. Connect Tissue Res. 1988; 17: 1–9
  • McMaster W. C. Mechanical properties and early clinical experience with xenograft biomaterials. Bull. Hosp. Jt. Dis. Orthop Inst. 1986; 46: 174–84
  • Provenzano P. P., Vanderby R., Jr. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol. 2006; 25: 71–84
  • Cheung D. T., Perelman N., Ko E. C., Nimni M. E. Mechanism of crosslinking of proteins by glutaraldehyde III. Reaction with collagen in tissues. Connect Tissue Res. 1985; 13: 109–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.