127
Views
10
CrossRef citations to date
0
Altmetric
Original

Dysplastic Histogenesis of Cartilage Growth Plate by Alteration of Sulphation Pathway: A Transgenic Model

, , , &
Pages 232-242 | Received 03 Sep 2008, Accepted 11 Dec 2008, Published online: 11 Sep 2009

REFERENCES

  • Holtrop M. E. The ultrastructure of the epiphyseal plate. II. The hypertrophic chondrocyte. Calcif. Tissue Res. 1972; 9: 140–151
  • Fawcett D. W. A textbook of Histology, , et al. Saunders, Philadelphia 1986
  • Cancedda R., Descalzi Cancedda F., Castagnola P. Chondrocyte differentiation. Int. Rev. Cytol. 1995; 159: 265–358
  • Vanky P., Brockstedt U., Hjerpe A., Wikstrom B. Kinetic studies on epiphyseal growth cartilage in the normal mouse. Bone 1998; 22: 331–339
  • Iozzo R. V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 1998; 67: 609–652
  • Heinegard D., Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 1989; 3: 2042–2051
  • Bianco P., Fisher L. W., Young M. F., Termine J. D., Gehron Robey P. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and and non skeletal tissues. J. Histochem. Cytochem. 1990; 38: 1549–1568
  • Spranger J., Langer L. O., Wiedemann H. R. Bone dysplasia. An Atlas of Constitutional Disorders of Skeletal Development, , et al. Gustav Fischer, Stuttgart 1974
  • Horton W. A., Rimoin D. L., Lachman R. S., Skovby F., Hollister D. W., Spranger J., Scott C. I., Hall J. G. The phenotypic variability of diastrophic dysplasia. J. Pediatr. 1978; 93: 609–613
  • Heinegard D., Oldberg A. Connective Tissue and its Heritable Disorders-Molecular, Genetics and Medical Aspects, P. M. Royce, B. Steinmann. Wiley-Liss, New York 1993; 189–209, Glycosylated Matrix Proteins
  • Sillence D., Worthington S., Dixon J., Osborn R., Kozlowski K. Atelosteogenesis syndromes: a review, with comments on their pathogenesis. Pediatr. Radiol. 1997; 27: 388–396
  • Superti Furga A. Skeletal dysplasias related to defects of sulfate metabolism. Connective Tissue and its Heritable Disorders, B. Steinman, P. Royce. Wiley-Liss, New York 2002; 939–96
  • Hastbacka J., de la Chapelle A., Mahtani M. M., Clines G., Reeve-Daly M. P., Daly M., Hamilton B. A., Kusumi K., Trivedi B., Weaver A., Coloma A., Lovett M., Buckler A., Kaitila I., Lander S. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994; 78: 1073–1087
  • Hastbacka J., Superti-Furga A., Wilcox W. R., Rimoin D. L., Cohn D. H., Lander E. S. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 1986; 58: 255–262
  • Rossi A., Bonaventure J., Delezoide A. L., Cetta G., Superti-Furga A. Undersulfation of proteoglycans synthesized by chondrocytes from a patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter. J. Biol. Chem. 1996; 271: 18456–18464
  • Rossi A., Superti-Furga A. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance. Hum. Mutat. 2001; 17: 159–171
  • Superti-Furga A., Hastbacka J., Wilcox W. R., Cohn D. H., Van Der Harten H. J., Rossi A., Blau N., Rimoin D. L., Steinmann B., Lander E. S., Gitzelmann R. Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat. Genet. 1996; 12: 100–102
  • Forlino A., Piazza R., Tiveron C., Della Torre S., Tatangelo L., Bonafe L., Gualeni B., Romano A., Pecora F., Superti-Furga A., Cetta G., Rossi A. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum. Mol. Genet. 2005; 14: 859–871
  • Vanky P., Brockstedt U., Nurminen M., Wikstrom B., Hjerpe A. Growth parameters in the epiphyseal cartilage of brachymorphic (bm/bm) mice. Calcif. Tissue Int. 2000; 66: 355–362
  • Barbieri O., Astigiano S., Morini M., Tavella S., Schito A., Corsi A., Di Martino D., Bianco P., Cancedda R., Garofalo S. Depletion of cartilage collagen fibrils in mice carrying a dominant negative Col2a1 transgene affects chondrocyte differentiation. Am. J. Physiol. Cell Physiol. 2003; 285: 1504–1512
  • Leighton M. P., Nundall S., Starborg T., Meadows R. S., Suleman F., Knowles L., Wagener R., Thornton D. J., Kadler K. E., Boott-Handford R. P., Briggs D. Decreased chondrocyte proliferation and dysregulated apoptosis in the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3 mutation. Hum. Mol. Genet. 2007; 16: 1728–1741
  • De Fazio A., Leary J. A., Hedley D. W., Tattersall M. H.N. Immunohistochemical detection of proliferating cells in vivo. J. Histochem. Cytochem. 1987; 35: 571–577
  • Casasco A., Calligaro A., Casasco M. Proliferative and functional stages of rat ameloblast differentiation as revealed by combined immunocytochemistry against enamel matrix proteins and bromodeoxyuridine. Cell Tissue Res. 1992; 270: 415–423
  • Gabe M. Histological Techniques, , et al. Masson/Springer-Verlag, Paris 1976
  • Gonchoroff N. J., Katzmann J. A., Currie R. M., Evans E. L., Houck D. W., Kline B. C., Greipp P. R., Loken M. R. S-phase detection with an antibody to bromodeoxyuridine. Role of Dnase pre-tretment. J. Immunol. Meth. 1986; 93: 97–101
  • Mayne R., Mayne P., Ren Z. X., Accavitti M. A., Gurusiddappa S., Scott P. G. Monoclonal antibody to the aminotelopeptide of type II collagen: loss of the epitope after stromelysin digestion. Connect. Tissue Res. 1994; 31: 11–21
  • Olsen B. J., Ninomiya Y. “Basement Membrane Collages.”. Guidebook to the Extracellular Matrix and Adhesion Proteins, Kreis, Vale. Oxford University Press, OxfordEngland 1993
  • Polak J. M., Van Noorden S. Immunocytochemistry, Modern Methods and Applications, , et al. John Wright and Sons, BristolEngland 1986
  • Kronenberg H. M. Developmental regulation of the growth plate. Nature 2003; 423: 332–336
  • Provot S., Schipani E. Molecular mechanisms of endochondral bone development. Biochem. Biophys. Res. Commun. 2005; 328: 658–665
  • Satoh H., Susaki M., Shukunami C., Iyama K., Negoro T., Hiraki Y. Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J. Biol. Chem. 1998; 273: 12307–12315
  • Boskey A. L., Maresca M., Wikstrom B., Hjerpe A. Hydroxyapatite formation in the presence of proteoglycans of reduced sulfate content: studies in the brachymorphic mouse. Calcif. Tissue Int. 1991; 49: 389–393
  • Hunziker E. B., Schenk R. K., Cruz-Olive L. M. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J. Bone Jt. Surg. 1987; 69: 162–173
  • Scott J. E. Proteoglycan-fibrillar collagen interactions. Biochem. J. 1988; 223: 587–597
  • Vogel K. G., Paulsson M., Heinegard D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 1984; 223: 587–597
  • Leyh T. S. The physical biochemistry and molecular genetics of sulfate activation. Crit. Rev. Biochem. Mol. Biol. 1993; 28: 515–542
  • Habuchi O. Diversity and functions of glycosaminoglycan sulfotransferases. Biochem. Biophys. Acta 2000; 1474: 115–127
  • Klaassen C. D., Boles J. W. Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phsphosulfate (PAPS) in the regulation of sulfation. FASEB J. 1997; 11: 404–418
  • Humphries D. E., Silbert C. K., Silbert J. E. Sulphation by cultured cells. Cysteine, cysteinesulphinic acid and sulphite as sources for proteoglycan sulphate. Biochem. J. 1988; 252: 305–308
  • Folkman J., Moscona A. Role of cell shape in growth control. Nature 1978; 273: 345–349
  • Ingber D. E., Madri J. A., Jameson J. D. Basement membrane as a spatial organizer of polarized epithelia: exogenous basement membrane reorients pancreatic epithelial tumor cells in vitro. Am. J. Pathol. 1986; 122: 129–139.
  • Ingber D. E. Tensegrity II. How structural networks influence cellular information processing network. J. Cell Sci. 2003; 116: 1397–1408
  • Chintala S. K., Miller R. R., McDevitt C. A. Role of heparan sulfate in the terminal differentiation of growth plate chondrocytes. Arch. Biochem. Biophys. 1995; 316: 227–234
  • Hirsch M. S., Lunsford L. E., Trinkaus-Randall V., Svoboda K. K.H. Chondrocyte survival and differentiation in situ are integrin mediated. Dev. Dynam. 1997; 221: 249–263
  • Shimizu M., Minakauchi K., Kaji S., Koga J. Condrocyte migration to fibronectin, type I collagen and type II collagen. Cell Struct. Funct. 1997; 22: 309–315
  • Grashoff C., Aszodi A., Sakai T., Hunziker E. B., Fassler R. Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Reports 2003; 4: 432–438
  • Habuchi H., Suzuki S., Saito T., Tamura T., Harada T., Yoshida K., Kimata K. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem. J. 1992; 3: 805–813
  • Salmivirta M., Heino J., Jalkanen M. Basic fibroblast growth factor-syndecan complex at cell surface or immobilized to matrix promotes cell growth. J. Biol. Chem. 1992; 267: 17606–17610
  • Ishihara M., Takano R., Kanda T., Hayashi K., Hara S., Kibuchi H., Yoshida K. Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. Biochem. J. 1995; 118: 1255–1260
  • Adams C. S., Shapiro I. M. The fate of terminally differentiated chondrocyte: evidence for a microenvironmental regulation of chondrocyte apoptosis. Crit. Rev. Oral. Biol. Med. 2002; 13: 465–473
  • Zenmyo M., Setsuro K., Kawabata R., Sasaguri Y., Inoue A., Morimatsu M. Morphological and biochemical evidence for apoptosis in the terminal hypertrophic chondrocytes of the growth plate. J. Pathol. 1996; 180: 430–433
  • Gibson G. Active role of chondrocyte apoptosis in endochondral ossification. Microsc. Res. Tech. 1998; 43: 91–204
  • Roach H. I., Aigner T., Kouri J. B. Chondroptosis: a variant of apoptotic cell death in chondrocytes?. Apoptosis 2004; 9: 265–277
  • Ereinpreisa J., Roach H. I. Epigenetic selection as a possible component of transdifferentiation. Further study of the commitment of hypertrophic chondrocytes to become osteocytes. Mech. Age Dev. 1996; 87: 165–182
  • Bianco P., Cancedda F. D., Riminucci M., Cancedda R. Bone formation via cartilage models: the “borderline” chondrocyte. Matrix Biol. 1998; 17: 185–192

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.