448
Views
7
CrossRef citations to date
0
Altmetric
Articles

Fine-tuning the ubiquitin-proteasome system to treat pulmonary fibrosis

, &
Pages 50-61 | Received 31 May 2018, Accepted 23 Sep 2018, Published online: 22 Oct 2018

References

  • Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014; 9: 157–179.doi: 10.1146/annurev-pathol-012513-104706 PubMed PMID: 24050627; PubMed Central PMCID: PMCPMC4116429
  • King TE Jr., Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet (London, England). 2011 Dec3; 378(9807): 1949–1961.doi: 10.1016/s0140-6736(11)60052-4 PubMed PMID: 21719092; eng
  • Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. The Lancet. 2012; 380(9842): 680–688.doi: 10.1016/s0140-6736(12)61144-1
  • Sakai N, Tager AM. Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta. 2013 Jul; 1832(7): 911–921.doi: 10.1016/j.bbadis.2013.03.001 PubMed PMID: 23499992; PubMed Central PMCID: PMCPMC4041487. eng
  • Kasper M, Barth K. Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep. 2017 Dec22; 37(6): BSR20171301.doi: 10.1042/BSR20171301 PubMed PMID: 29026006; PubMed Central PMCID: PMCPMC5696455
  • Kulkarni T, de Andrade J, Zhou Y, Luckhardt T, Thannickal VJ. Alveolar epithelial disintegrity in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2016 Aug1; 311(2): L185–91.doi: 10.1152/ajplung.00115.2016 PubMed PMID: 27233996; PubMed Central PMCID: PMCPMC5005273. eng
  • Kim SJ, Cheresh P, Jablonski RP, Williams DB, Kamp DW. The role of mitochondrial DNA in mediating alveolar epithelial cell apoptosis and pulmonary fibrosis. Int J Mol Sci. 2015 Sep7; 16(9): 21486–21519.doi: 10.3390/ijms160921486 PubMed PMID: 26370974; PubMed Central PMCID: PMCPMC4613264
  • Romero F, Summer R. Protein folding and the challenges of maintaining endoplasmic reticulum proteostasis in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017 Nov; 14(Supplement_5): S410–s413.doi: 10.1513/AnnalsATS.201703-207AW PubMed PMID: 29161089; PubMed Central PMCID: PMCPMC5711273. eng
  • McElvaney NG, Greene CM. Mechanisms of protein misfolding in conformational lung diseases. Curr Mol Med. 2012 Aug; 12(7): 850–859. PubMed PMID: 22697345; eng
  • Tanjore H, Cheng DS, Degryse AL, Zoz DF, Abdolrasulnia R, Lawson WE, Blackwell TS. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem. 2011 Sep2; 286(35): 30972–30980.doi: 10.1074/jbc.M110.181164 PubMed PMID: 21757695; PubMed Central PMCID: PMCPMC3162456
  • Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F, Rosenblatt RL, DiMaio JM, Kinch LN, Grishin NV, Garcia CK. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet. 2009 Jan; 84(1): 52–59.doi: 10.1016/j.ajhg.2008.11.010 PubMed PMID: 19100526; PubMed Central PMCID: PMCPMC2668050. eng
  • van Moorsel C, van der Vis J, van Oosterhout M, et al. Mutations in SFTPC, SFTPA2 and TERT explain 60% of familial pulmonary fibrosis and correlate to specific disease phenotypes. Eur Respir J. 2011; 38(Suppl): 55.
  • Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen C-I, Anekalla KR, Joshi N, Williams KJN, Abdala-Valencia H, Yacoub TJ, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Gates K, Lam AP, Nicholson TT, Homan PJ, Soberanes S, Dominguez S, Morgan VK, Saber R, Shaffer A, Hinchcliff M, Marshall SA, Bharat A, Berdnikovs S, Bhorade SM, Bartom ET, Morimoto RI, Balch WE, Sznajder JI, Chandel NS, Mutlu GM, Jain M, Gottardi CJ, Singer BD, Ridge KM, Bagheri N, Shilatifard A, Budinger GRS, Perlman H. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017 Aug7; 214(8): 2387–2404.doi: 10.1084/jem.20162152 PubMed PMID: 28694385; PubMed Central PMCID: PMCPMC5551573. eng
  • Byrne AJ, Maher TM, Lloyd CM. Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med. 2016 Apr; 22(4): 303–316.doi: 10.1016/j.molmed.2016.02.004 PubMed PMID: 26979628; eng
  • Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A, McBride AP, Zaynagetdinov R, Benjamin JT, Lawson WE, Novitskiy SV, Blackwell TS. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight. 2016 Oct20; 1(17): e88947.doi: 10.1172/jci.insight.88947 PubMed PMID: 27777976; PubMed Central PMCID: PMCPMC5070955. eng
  • Rossi G, Cavazza A, Spagnolo P, Bellafiore S, Kuhn E, Carassai P, Caramanico L, Montanari G, Cappiello G, Andreani A, Bono F, Nannini N. The role of macrophages in interstitial lung diseases: number 3 in the series “Pathology for the clinician” Edited by Peter Dorfmuller and Alberto Cavazza .Eur Respir Rev. 2017 Sep30; 26(145).doi: 10.1183/16000617.0009-2017 Edited by Peter Dorfmuller and Alberto Cavazza
  • Moore MW, Herzog EL. Regulation and relevance of myofibroblast responses in idiopathic pulmonary fibrosis. Curr Pathobiol Rep. 2013 Sep; 1(3): 199–208.doi: 10.1007/s40139-013-0017-8 PubMed PMID: 25705577; PubMed Central PMCID: PMCPMC4334480
  • Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014; 5: 123.doi: 10.3389/fphar.2014.00123 PubMed PMID: 24904424; PubMed Central PMCID: PMCPMC4034148
  • Robalo-Cordeiro C, Campos P, Carvalho L, Borba A, Clemente S, Freitas S, Furtado S, Jesus JM, Leal C, Marques A, Melo N, Souto-Moura C, Neves S, Sousa V, Santos A, Morais A. Idiopathic pulmonary fibrosis in the era of antifibrotic therapy: searching for new opportunities grounded in evidence. Rev Port Pneumol. 2017 Sep - Oct; 23(5): 287–293.doi: 10.1016/j.rppnen.2017.05.005 PubMed PMID: 28668400; eng
  • Fraser E, Hoyles RK. Therapeutic advances in idiopathic pulmonary fibrosis. Clin Med. 2016 Feb; 16(1): 42–51.doi: 10.7861/clinmedicine.16-1-42 PubMed PMID: 26833513; eng
  • Lagares D, Grasberger P, Probst C, et al. Therapeutic targeting of fibroblast durotaxis: a novel class of anti-fibrotic therapies for IPF. C17. FASCINATING MECHANISMS IN LUNG FIBROSIS. International Conference Abstracts; San Francisco (CA): American Thoracic Society; 2016. p. A4582–A4582.
  • Livnat-Levanon N, Glickman MH. Ubiquitin–proteasome system and mitochondria — reciprocity. Biochimica Biophysica Acta (BBA) Gene Regulatory Mechanisms. 2011 Feb01; 1809(2): 80–87.
  • Guzy RD, Li L, Smith C, Dorry SJ, Koo HY, Chen L, Ornitz DM. Pulmonary fibrosis requires cell-autonomous mesenchymal Fibroblast Growth Factor (FGF) signaling. J Biol Chem. 2017 Jun23; 292(25): 10364–10378.doi: 10.1074/jbc.M117.791764 PubMed PMID: 28487375; PubMed Central PMCID: PMCPMC5481550. eng
  • Kim KK, Sisson TH, Horowitz JC. Fibroblast growth factors and pulmonary fibrosis: it’s more complex than it sounds. J Pathol. 2017 Jan; 241(1): 6–9.doi: 10.1002/path.4825 PubMed PMID: 27757968; PubMed Central PMCID: PMCPMC5499705. eng
  • Hinkson IV, Elias JE. The dynamic state of protein turnover: it’s about time. Trends Cell Biol. 2011 May; 21(5): 293–303.doi: 10.1016/j.tcb.2011.02.002 PubMed PMID: 21474317; eng
  • Rothman S. How is the balance between protein synthesis and degradation achieved? Theor Biol Med Model. 2010 Jun23; 7: 25.doi: 10.1186/1742-4682-7-25 PubMed PMID: 20573219; PubMed Central PMCID: PMCPMC2909984. eng
  • Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002 Apr; 82(2): 373–428.doi: 10.1152/physrev.00027.2001 PubMed PMID: 11917093; eng
  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998; 67: 425–479.doi: 10.1146/annurev.biochem.67.1.425 PubMed PMID: 9759494; eng
  • Hong L, Huang HC, Jiang ZF. Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer’s disease. Neurol Res. 2014 Mar; 36(3): 276–282.doi: 10.1179/1743132813y.0000000288 PubMed PMID: 24512022; eng
  • Ihara Y, Morishima-Kawashima M, Nixon R. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med. 2012 Aug1; 2(8).doi: 10.1101/cshperspect.a006361 PubMed PMID: 22908190; PubMed Central PMCID: PMCPMC3405832. eng
  • Salome M, Campos J, Keeshan K. TRIB2 and the ubiquitin proteasome system in cancer. Biochem Soc Trans. 2015 Oct; 43(5): 1089–1094.doi: 10.1042/bst20150103 PubMed PMID: 26517929; eng
  • Day SM, Divald A, Wang P, Davis F, Bartolone S, Jones R, Powell SR. Impaired assembly and post-translational regulation of 26S proteasome in human end-stage heart failure. Circ Heart Fail. 2013 May; 6(3): 544–549.doi: 10.1161/circheartfailure.112.000119 PubMed PMID: 23515276; PubMed Central PMCID: PMCPMC3864674. eng
  • Fessart D, Martin-Negrier M-L, Claverol S, Thiolat M-L, Crevel H, Toussaint C, Bonneu M, Muller B, Savineau J-P, Delom F. Proteomic remodeling of proteasome in right heart failure. J Mol Cell Cardiol. 2014 Jan; 66: 41–52.doi: 10.1016/j.yjmcc.2013.10.015 PubMed PMID: 24184261; eng
  • Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome structure and assembly. J Mol Biol. 2017 Nov10; 429(22): 3500–3524.doi: 10.1016/j.jmb.2017.05.027 PubMed PMID: 28583440; PubMed Central PMCID: PMCPMC5675778
  • Wang C, Wang X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim Biophys Acta. 2015 Feb; 1852(2): 188–194.doi: 10.1016/j.bbadis.2014.07.028 PubMed PMID: 25092168; PubMed Central PMCID: PMCPMC4277934. eng
  • Nam T, Han JH, Devkota S, Lee H-W. Emerging paradigm of crosstalk between autophagy and the ubiquitin-proteasome system. Mol Cells. 2017 Dec31; 40(12): 897–905.doi: 10.14348/molcells.2017.0226 PubMed PMID: 29237114; PubMed Central PMCID: PMCPMC5750708. eng
  • Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001; 70: 503–533.doi: 10.1146/annurev.biochem.70.1.503 PubMed PMID: 11395416; eng
  • Kleiger G, Mayor T. Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol. 2014 Jun; 24(6): 352–359.doi: 10.1016/j.tcb.2013.12.003 PubMed PMID: 24457024; PubMed Central PMCID: PMCPMC4037451. eng
  • Metzger MB, Pruneda JN, Klevit RE, Weissman AM. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta. 2014 Jan; 1843(1): 47–60.doi: 10.1016/j.bbamcr.2013.05.026 PubMed PMID: 23747565; PubMed Central PMCID: PMCPMC4109693. eng
  • Kamadurai HB, Qiu Y, Deng A, Harrison JS, MacDonald C, Actis M, Rodrigues P, Miller DJ, Souphron J, Lewis SM, Kurinov I, Fujii N, Hammel M, Piper R, Kuhlman B, Schulman BA. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. Elife. 2013 Aug8; 2: e00828.doi: 10.7554/eLife.00828 PubMed PMID: 23936628; PubMed Central PMCID: PMCPMC3738095. eng
  • Spratt DE, Walden H, Shaw GS. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J. 2014 Mar15; 458(3): 421–437.doi: 10.1042/bj20140006 PubMed PMID: 24576094; PubMed Central PMCID: PMCPMC3940038. eng
  • Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun. 2013; 4: 1982.doi: 10.1038/ncomms2982 PubMed PMID: 23770887; PubMed Central PMCID: PMCPMC3709503. eng
  • Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta. 2004 Nov29; 1695(1–3): 19–31.doi: 10.1016/j.bbamcr.2004.10.007 PubMed PMID: 15571806; eng
  • Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci. 2014 Dec; 71(24): 4729–4745.doi: 10.1007/s00018-014-1699-8 PubMed PMID: 25107634; eng
  • Shirozu R, Yashiroda H, Murata S. Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett. 2015 Apr2; 589(8): 933–940.doi: 10.1016/j.febslet.2015.02.025 PubMed PMID: 25747386; eng
  • Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell. 2010 Apr9; 38(1): 17–28.doi: 10.1016/j.molcel.2010.02.029 PubMed PMID: 20385086; PubMed Central PMCID: PMCPMC2874685. eng
  • Sotzny F, Schormann E, Kühlewindt I, Koch A, Brehm A, Goldbach-Mansky R, Gilling KE, Krüger E. TCF11/Nrf1-mediated induction of proteasome expression prevents cytotoxicity by rotenone. Antioxid Redox Signal. 2016 Dec1; 25(16): 870–885.doi: 10.1089/ars.2015.6539 PubMed PMID: 27345029; eng
  • Zhang Y, Manning BD. mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle (Georgetown, Tex). 2015; 14(13): 2011–2017.doi: 10.1080/15384101.2015.1044188 PubMed PMID: 26017155; PubMed Central PMCID: PMCPMC4613906. eng
  • Bragoszewski P, Turek M, Chacinska A. Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system. Open Biol. 2017 Apr; 7(4).doi: 10.1098/rsob.170007 PubMed PMID: 28446709; PubMed Central PMCID: PMCPMC5413908. eng
  • Lehmann G, Udasin RG, Ciechanover A. On the linkage between the ubiquitin-proteasome system and the mitochondria. Biochem Biophys Res Commun. 2016 Apr22; 473(1): 80–86.doi: 10.1016/j.bbrc.2016.03.055
  • Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014 Jan16; 505(7483): 335–343.doi: 10.1038/nature12985 PubMed PMID: 24429632; PubMed Central PMCID: PMCPMC4075653. eng
  • Bueno M, Lai Y-C, Romero Y, Brands J, St Croix CM, Kamga C, Corey C, Herazo-Maya JD, Sembrat J, Lee JS, Duncan SR, Rojas M, Shiva S, Chu CT, Mora AL. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015 Feb2; 125(2): 521–538.doi: 10.1172/jci74942 PubMed PMID: 25562319; PubMed Central PMCID: PMCPMC4319413. eng
  • Allen JF, de Paula WBM. Mitochondrial genome function and maternal inheritance. Biochem Soc Trans. 2013 Oct; 41(5): 1298–1304.doi: 10.1042/bst20130106 PubMed PMID: 24059523; eng
  • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CAP, Ploegh H. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One. 2008 Jan23; 3(1): e1487.doi: 10.1371/journal.pone.0001487 PubMed PMID: 18213395; PubMed Central PMCID: PMCPMC2198940. eng
  • Zhang J, Xu P, Wang Y, Wang M, Li H, Lin S, Mao C, Wang B, Song X, Lv C. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission. J Cell Mol Med. 2015 Sep; 19(9): 2215–2231.doi: 10.1111/jcmm.12609 PubMed PMID: 26119034; PubMed Central PMCID: PMCPMC4568926
  • Radke S, Chander H, Schafer P, Meiss G, Krüger R, Schulz JB, Germain D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J Biol Chem. 2008 May9; 283(19): 12681–12685.doi: 10.1074/jbc.C800036200 PubMed PMID: 18362145; PubMed Central PMCID: PMCPMC2442309
  • Cohen MM, Leboucher GP, Livnat-Levanon N, Glickman MH, Weissman AM. Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol Biol Cell. 2008 Jun; 19(6): 2457–2464.doi: 10.1091/mbc.E08-02-0227 PubMed PMID: 18353967; PubMed Central PMCID: PMCPMC2397313. eng
  • Tar K, Dange T, Yang C, Yao Y, Bulteau A-L, Salcedo EF, Braigen S, Bouillaud F, Finley D, Schmidt M. Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1. J Biol Chem. 2014 Apr25; 289(17): 12145–12156.doi: 10.1074/jbc.M114.554105 PubMed PMID: 24604417; PubMed Central PMCID: PMCPMC4002118
  • Geng J, Huang X, Li Y, Xu X, Li S, Jiang D, Liang J, Jiang D, Wang C, Dai H. Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis. Respir Res. 2015 Oct9; 16: 124.doi: 10.1186/s12931-015-0286-3 PubMed PMID: 26453058; PubMed Central PMCID: PMCPMC4600336. eng
  • Nho RS, Hergert P, Kahm J, Jessurun J, Henke C. Pathological alteration of FoxO3a activity promotes idiopathic pulmonary fibrosis fibroblast proliferation on type i collagen matrix. Am J Pathol. 2011 Nov; 179(5): 2420–2430.doi: 10.1016/j.ajpath.2011.07.020 PubMed PMID: 21893017; PubMed Central PMCID: PMCPMC3204034. eng
  • Kral JB, Kuttke M, Schrottmaier WC, Birnecker B, Warszawska J, Wernig C, Paar H, Salzmann M, Sahin E, Brunner JS, Österreicher C, Knapp S, Assinger A, Schabbauer G. Erratum: sustained PI3K activation exacerbates BLM-induced lung fibrosis via activation of pro-inflammatory and pro-fibrotic pathways. Sci Rep. 2016 May20; 7: 26048.doi: 10.1038/srep26048 PubMed PMID: 27206226; PubMed Central PMCID: PMCPMC4874234. eng
  • Tatler AL, Jenkins G. TGF-beta activation and lung fibrosis. Proc Am Thorac Soc. 2012 Jul; 9(3): 130–136.doi: 10.1513/pats.201201-003AW PubMed PMID: 22802287
  • Fernandez IE, Eickelberg O. The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012 Jul; 9(3): 111–116.doi: 10.1513/pats.201203-023AW PubMed PMID: 22802283
  • Imamura T, Oshima Y, Hikita A. Regulation of TGF-β family signalling by ubiquitination and deubiquitination. J Biochemistry. 2013; 154(6): 481–489.doi: 10.1093/jb/mvt097
  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000 Dec; 6(6): 1365–1375. PubMed PMID: 11163210; eng
  • Tang LY, Yamashita M, Coussens NP, Tang Y, Wang X, Li C, Deng C-X, Cheng SY, Zhang YE. Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3. Embo J. 2011 Nov1; 30(23): 4777–4789.doi: 10.1038/emboj.2011.393 PubMed PMID: 22045334; PubMed Central PMCID: PMCPMC3243605. eng
  • Gvaramia D, Blaauboer ME, Hanemaaijer R, Everts V. Role of caveolin-1 in fibrotic diseases. Matrix Biol. 2013 Aug08; 32(6): 307–315.doi: 10.1016/j.matbio.2013.03.005 PubMed PMID: 23583521
  • Mutlu GM, Budinger GR, Wu M, Lam AP, Zirk A, Rivera S, Urich D, Chiarella SE, Go LHT, Ghosh AK, Selman M, Pardo A, Varga J, Kamp DW, Chandel NS, Sznajder JI, Jain M. Proteasomal inhibition after injury prevents fibrosis by modulating TGF-beta(1) signalling. Thorax. 2012 Feb; 67(2): 139–146.doi: 10.1136/thoraxjnl-2011-200717 PubMed PMID: 21921091; PubMed Central PMCID: PMCPMC3595535
  • Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang J-Y, Gupta M, Nagalingam RS, Wolfgeher D, Verdin E, Gupta MP. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol Cell Biol. 2016 Mar1; 36(5): 678–692.doi: 10.1128/mcb.00586-15 PubMed PMID: 26667039; PubMed Central PMCID: PMCPMC4760222. eng
  • Sosulski ML, Gongora R, Feghali-Bostwick C, Lasky JA, Sanchez CG. Sirtuin 3 deregulation promotes pulmonary fibrosis. J Gerontol A Biol Sci Med Sci. 2017 May1; 72(5): 595–602.doi: 10.1093/gerona/glw151 PubMed PMID: 27522058; eng
  • Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, Raparia K, Gupta MP, Kamp DW, Varga J. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 2016 Oct25; 7(43): 69321–69336.doi: 10.18632/oncotarget.12504 PubMed PMID: 27732568; PubMed Central PMCID: PMCPMC5342480
  • Bindu S, Pillai VB, Kanwal A, Samant S, Mutlu GM, Verdin E, Dulin N, Gupta MP. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am J Physiol Lung Cell Mol Physiol. 2017 Jan1; 312(1): L68–L78.doi: 10.1152/ajplung.00188.2016 PubMed PMID: 27815257; PubMed Central PMCID: PMCPMC5283928
  • Jablonski RP, Kim SJ, Cheresh P, Williams DB, Morales-Nebreda L, Cheng Y, Yeldandi A, Bhorade S, Pardo A, Selman M, Ridge K, Gius D, Budinger GRS, Kamp DW. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis. FASEB J. 2017 Jun; 31(6): 2520–2532.doi: 10.1096/fj.201601077R PubMed PMID: 28258190; PubMed Central PMCID: PMCPMC5434657
  • Uhal B, Abdul-Hafez A. Bleomycin downregulates ACE-2 in alveolar epithelial cells through a posttranscriptional mechanism inhibitable by angiotensin 1-7. A58. Animal models of pulmonary fibrosis. International Conference Abstracts; New Orleans (LA): American Thoracic Society; 2010. p. A1979–A1979.
  • Sanders PM, Russell ST, Tisdale MJ. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br J Cancer. 2005 Aug22; 93(4): 425–434.doi: 10.1038/sj.bjc.6602725 PubMed PMID: 16052213; PubMed Central PMCID: PMCPMC3217221. eng
  • Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012 Jul6; 18(7): 1028–1040.doi: 10.1038/nm.2807 PubMed PMID: 22772564; PubMed Central PMCID: PMCPMC3405917. eng
  • Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, Murphy G, Enghild JJ, Hohenester E, Nagase H. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc Natl Acad Sci U S A. 2012 Jul31; 109(31): 12461–12466.doi: 10.1073/pnas.1204991109 PubMed PMID: 22761315; PubMed Central PMCID: PMCPMC3411981. eng
  • Lin PS, Chang HH, Yeh CY, Chang M-C, Chan C-P, Kuo H-Y, Liu H-C, Liao W-C, Jeng P-Y, Yeung S-Y, Jeng J-H. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: role of MEK/ERK and activin receptor-like kinase-5/smad signaling. J Formos Med Assoc. 2017 May; 116(5): 351–358.doi: 10.1016/j.jfma.2016.07.014 PubMed PMID: 27720345; eng
  • Goffin L, Seguin-Estevez Q, Alvarez M, Reith W, Chizzolini C. Transcriptional regulation of matrix metalloproteinase-1 and collagen 1A2 explains the anti-fibrotic effect exerted by proteasome inhibition in human dermal fibroblasts. Arthritis Res Ther. 2010; 12(2): R73.doi: 10.1186/ar2991 PubMed PMID: 20429888; PubMed Central PMCID: PMCPMC2888229. eng
  • Ma Y, Chen Y, Yang Y, Chen B, Liu D, Xiong Z, Zhang C, Dong Y. Proteasome inhibition attenuates heart failure during the late stages of pressure overload through alterations in collagen expression. Biochem Pharmacol. 2013 Jan15; 85(2): 223–233.doi: 10.1016/j.bcp.2012.10.025 PubMed PMID: 23142711; eng
  • Morrow JK, Lin HK, Sun SC, Zhang S. Targeting ubiquitination for cancer therapies. Future Med Chem. 2015; 7(17): 2333–2350.doi: 10.4155/fmc.15.148 PubMed PMID: 26630263; PubMed Central PMCID: PMCPMC4976843. eng
  • Shearer RF, Iconomou M, Watts CK, Saunders DN. Functional roles of the E3 ubiquitin ligase UBR5 in cancer. Mol Cancer Res. 2015 Dec; 13(12): 1523–1532.doi: 10.1158/1541-7786.Mcr-15-0383 PubMed PMID: 26464214; eng
  • Shen M, Schmitt S, Buac D, Dou QP. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets. 2013 Sep; 17(9): 1091–1108.doi: 10.1517/14728222.2013.815728 PubMed PMID: 23822887; PubMed Central PMCID: PMCPMC3773690. eng
  • Masumoto K, Kitagawa M. E3 ubiquitin ligases as molecular targets in human oral cancers. Curr Cancer Drug Targets. 2016; 16(2): 130–135. PubMed PMID: 26560119; eng
  • Lear T, Chen BB. Therapeutic targets in fibrotic pathways. Cytokine. 2016 Dec; 88: 193–195.doi: 10.1016/j.cyto.2016.09.008 PubMed PMID: 27658114; PubMed Central PMCID: PMCPMC5119757. eng

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.