730
Views
5
CrossRef citations to date
0
Altmetric
Reviews

The role of epigenetic modifications in the osteogenic differentiation of adipose-derived stem cells

, , , , &
Pages 507-520 | Received 19 Oct 2018, Accepted 18 Feb 2019, Published online: 17 Jun 2019

References

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 April 02;284(5411):143–147.
  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 April 01;7(2):211–228. doi:10.1089/107632701300062859.
  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006 May 01;24(5):1294–1301. doi:10.1634/stemcells.2005-0342.
  • Freitas CS, Dalmau SR. ultiple sources of non-embryonic multipotent stem cells: processed lipoaspirates and dermis as promising alternatives to bone-marrow-derived cell therapies. Cell Tissue Res. 2006 2006 Sep 01;325(3):403–411. doi:10.1007/s00441-006-0172-x.
  • Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006 April 01;24(4):150–154. doi:10.1016/j.tibtech.2006.01.010.
  • Levi B, James AW, Nelson ER, Vistnes D, Wu B, Lee M, Gupta A, Longaker MT, Capogrossi MC. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One. 2010 June 17;5(6):e11177. doi:10.1371/journal.pone.0011177.
  • Zuk PA, M Z, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 April 01;7(2):211–228. doi:10.1089/107632701300062859.
  • Senarath-Yapa K, McArdle A, Renda A, Longaker MT, Quarto N. Adipose-derived stem cells: a review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair. Int J Mol Sci. 2014 May 26;15(6):9314–9330. doi:10.3390/ijms15069314.
  • Ohbo K, Tomizawa S. Epigenetic regulation in stem cell development, cell fate conversion, and reprogramming. Biomol Concepts. 2015 March 01;6(1):1–9. doi:10.1515/bmc-2014-0036.
  • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004 May 27;429(6990):457–463. doi:10.1038/nature02625.
  • Vincent A, Van Seuningen I. Epigenetics, stem cells and epithelial cell fate. Differentiation. 2009 Sep 01;78(2–3):99–107. doi:10.1016/j.diff.2009.07.002.
  • Eslaminejad MB, Fani N, Shahhoseini M. Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell J. 2013 March 01;15(1):1–10.
  • Saldanha SN, Royston KJ, Udayakumar N, Tollefsbol TO. Epigenetic regulation of epidermal stem cell biomarkers and their role in wound healing. Int J Mol Sci. 2015 Dec 24;17(1):16. doi:10.3390/ijms17010016.
  • Gudas LJ. Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol. 2013 Dec 01;24(10–12):701–705. doi:10.1016/j.semcdb.2013.08.002.
  • Bloushtain-Qimron N, Yao J, Shipitsin M, Maruyama R, Polyak K. Epigenetic patterns of embryonic and adult stem cells. Cell Cycle. 2009 March 15;8(6):809–817. doi:10.4161/cc.8.6.7938.
  • Noer A, Sorensen AL, Boquest AC, Collas P. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol Biol Cell. 2006 Aug 01;17(8):3543–3556. doi:10.1091/mbc.e06-04-0322.
  • Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr. 2007 Jan 20;27(1):363–388. doi:10.1146/annurev.nutr.27.061406.093705.
  • Huang B, Li G, Jiang XH, Kuroda K, Hibi H, Okido M, Ueda M. Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res Ther. 2015 March 19;6:35. doi:10.1186/s13287-015-0114-1.
  • Wang C, Shan S, Wang C, Wang J, Li J, Hu G, Dai K, Li Q, Zhang X. Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of sonic hedgehog. Exp Cell Res. 2017 March 15;352(2):346–356. doi:10.1016/j.yexcr.2017.02.021.
  • Zych J, Stimamiglio MA, Senegaglia AC, Brofman PR, Dallagiovanna B, Goldenberg S, Correa A. The epigenetic modifiers 5-aza-2ʹ-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells. Braz J Med Biol Res. 2013 May 01;46(5):405–416. doi:10.1590/1414-431X20132893.
  • Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, Zhao Z. Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomater. 2015 July 01;20:1–9. doi:10.1016/j.actbio.2015.04.008.
  • Xu L, Liu Y, Sun Y, Wang B, Xiong Y, Lin W, Reichert AS, Koopman WJH, Willems PHGM, Rodenburg RJ, et al. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res Ther. 2017 Dec 06;8(1):275. doi:10.1186/s13287-017-0601-7.
  • Lee HS. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients. 2015 Nov 17;7(11):9492–9507. doi:10.3390/nu7115467.
  • Hemming S, Cakouros D, Isenmann S, Cooper L, Menicanin D, Zannettino A, Gronthos S. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells. 2014 March 01;32(3):802–815. doi:10.1002/stem.1573.
  • Pa Z, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 April 01;7(2):211–228. doi:10.1089/107632701300062859.
  • Vivek K, Amiti S, Shivshankar S, Lalit C. Electrolyte and Haemogram changes post large volume liposuction comparing two different tumescent solutions. Indian J Plast Surg. 2014 Sep 01;47(3):386–393. doi:10.4103/0970-0358.146604.
  • Baer PC, Kuci S, Krause M, Kuci Z, Zielen S, Geiger H, Bader P, Schubert R. Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev. 2013 Jan 15;22(2):330–339. doi:10.1089/scd.2012.0346.
  • Mizuno H, Tobita M, Uysal AC. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 2012 May 01;30(5):804–810. doi:10.1002/stem.1076.
  • Sachs PC, Francis MP, Zhao M, Brumelle J, Rao RR, Elmore LW, Holt SE. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res. 2012 Aug 01;349(2):505–515. doi:10.1007/s00441-012-1423-7.
  • Leto BA, Khalifian S, Lee WP, Brandacher G. Immunomodulatory effects of adipose-derived stem cells: fact or fiction? Biomed Res Int. 2013 Jan 20;2013:383685.
  • Gimble JM, Bunnell BA, Guilak F. Human adipose-derived cells: an update on the transition to clinical translation. Regen Med. 2012 March 01;7(2):225–235. doi:10.2217/rme.11.119.
  • Lande-Diner L, Zhang J, Ben-Porath I, Amariglio N, Keshet I, Hecht M, Azuara V, Fisher AG, Rechavi G, Cedar H. Role of DNA methylation in stable gene repression. J Biol Chem. 2007 April 20;282(16):12194–12200. doi:10.1074/jbc.M607838200.
  • Ibrahim AE, Thorne NP, Baird K, Barbosa-Morais NL, Tavare S, Collins VP, Wyllie AH, Arends MJ, Brenton JD. MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res. 2006 Jan 20;34(20):e136. doi:10.1093/nar/gkl551.
  • Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao J-L, Liu H, et al. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011 Jan 20;2011(2011711):201371. doi:10.4061/2011/201371.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002 Jan 01;16(1):6–21. doi:10.1101/gad.947102.
  • Leppert S, Matarazzo MR. De novo DNMTs and DNA methylation: novel insights into disease pathogenesis and therapy from epigenomics. Curr Pharm Des. 2014 Jan 20;20(11):1812–1818.
  • Maunakea AK, Chepelev I, Zhao K. Epigenome mapping in normal and disease states. Circ Res. 2010 Aug 06;107(3):327–339. doi:10.1161/CIRCRESAHA.110.222463.
  • Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem. 2012 Jan 20;81(1):97–117. doi:10.1146/annurev-biochem-052610-091920.
  • Chen JR, Zhang J, Lazarenko OP, Kang P, Blackburn ML, Ronis MJ, Badger TM, Shankar K. Inhibition of fetal bone development through epigenetic down-regulation of HoxA10 in obese rats fed high-fat diet. FASEB J. 2012 March 01;26(3):1131–1141. doi:10.1096/fj.11-197822.
  • Delgado-Calle J, Sanudo C, Sanchez-Verde L, Garcia-Renedo RJ, Arozamena J, Riancho JA. Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone. 2011 Oct 01;49(4):830–838. doi:10.1016/j.bone.2011.06.006.
  • Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007 Feb 08;445(7128):671–675. doi:10.1038/nature05515.
  • Zhang RP, Shao JZ, Xiang LX. GADD45A protein plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. J Biol Chem. 2011 Nov 25;286(47):41083–41094. doi:10.1074/jbc.M111.258715.
  • Lagarkova MA, Volchkov PY, Lyakisheva AV, Philonenko ES, Kiselev SL. Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle. 2006 Feb 01;5(4):416–420. doi:10.4161/cc.5.4.2440.
  • Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008 March 01;129(3):163–173. doi:10.1016/j.mad.2007.12.002.
  • Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011 April 18;193(2):257–266. doi:10.1083/jcb.201010131.
  • Yan X, Ehnert S, Culmes M, Bachmann A, Seeliger C, Schyschka L, Wang Z, Rahmanian-Schwarz A, Stöckle U, De Sousa PA, et al. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PLoS One. 2014 Jan 20;9(6):e90846. doi:10.1371/journal.pone.0090846.
  • Strauss S, Dudziak S, Hagemann R, Barcikowski S, Fliess M, Israelowitz M, Kracht D, Kuhbier JW, Radtke C, Reimers K, et al. Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress. PLoS One. 2012 Jan 20;7(12):e51264. doi:10.1371/journal.pone.0051264.
  • Yang X, Gong P, Lin Y, Zhang L, Li X, Yuan Q, Tan Z, Wang Y, Man Y, Tang H. Cyclic tensile stretch modulates osteogenic differentiation of adipose-derived stem cells via the BMP-2 pathway. Arch Med Sci. 2010 April 30;6(2):152–159. doi:10.5114/aoms.2010.13886.
  • Vlaikou AM, Kouroupis D, Sgourou A, Markopoulos GS, Bagli E, Markou M, Papadopoulou Z, Fotsis T, Nakos G, Lekka M-E-E, et al. Mechanical stress affects methylation pattern of GNAS isoforms and osteogenic differentiation of hAT-MSCs. Biochim Biophys Acta. 2017 Aug 01;1864(8):1371–1381. doi:10.1016/j.bbamcr.2017.05.005.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011 March 01;21(3):381–395. doi:10.1038/cr.2011.22.
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb 23;128(4):693–705. doi:10.1016/j.cell.2007.02.005.
  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001 Aug 10;293(5532):1074–1080. doi:10.1126/science.1063127.
  • Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009 Jan 16;33(1):1–13. doi:10.1016/j.molcel.2008.12.013.
  • Huynh NC, Everts V, Nifuji A, Pavasant P, Ampornaramveth RS. Histone deacetylase inhibition enhances in-vivo bone regeneration induced by human periodontal ligament cells. Bone. 2017 Feb 01;95(1):76–84. doi:10.1016/j.bone.2016.11.017.
  • McCauley BS, Dang W. Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta. 2014 dec 01;1839(12):1454–1462. doi:10.1016/j.bbagrm.2014.05.008.
  • Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A. Histone lysine methylation and chromatin replication. Biochim Biophys Acta. 2014 Dec 01;1839(12):1433–1439. doi:10.1016/j.bbagrm.2014.03.009.
  • Cheng X. Structural and functional coordination of DNA and histone methylation. Cold Spring Harb Perspect Biol. 2014 Aug 01;6(8):2999–3008. doi:10.1101/cshperspect.a018747.
  • Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, Yang -C-C, Yang J-Y, Lin C-Y, Lai -C-C, et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol. 2011 Jan 01;13(1):87–94. doi:10.1038/ncb2139.
  • Hu X, Fu Y, Zhang X, Dai L, Zhu J, Bi Z, Ao Y, Zhou C. Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells. Dev Growth Differ. 2014 April 01;56(3):206–213. doi:10.1111/dgd.12119.
  • Hu X, Zhang X, Dai L, Zhu J, Jia Z, Wang W, Zhou C, Ao Y. Histone deacetylase inhibitor trichostatin A promotes the osteogenic differentiation of rat adipose-derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP signaling-dependent manner. Stem Cells Dev. 2013 Jan 15;22(2):248–255. doi:10.1089/scd.2012.0105.
  • Maroni P, Brini AT, Arrigoni E, de Girolamo L, Niada S, Matteucci E, Bendinelli P, Desiderio MA. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors. Biochem Biophys Res Commun. 2012 Nov 16;428(2):271–277. doi:10.1016/j.bbrc.2012.10.044.
  • Zych J, Stimamiglio MA, Senegaglia AC, Brofman PR, Dallagiovanna B, Goldenberg S. The epigenetic modifiers 5-aza-2ʹ-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells. Braz J Med Biol Res. 2013 May 01;46(5):405–416. doi:10.1590/1414-431X20132893.
  • Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P, Xiao J. PPARgamma and wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2016 Jan 20;11(3):216–225.
  • Dudakovic A, Camilleri ET, Xu F, Riester SM, McGee-Lawrence ME, Bradley EW, Paradise CR, Lewallen EA, Thaler R, Deyle DR, et al. Epigenetic control of skeletal development by the histone methyltransferase Ezh2. J Biol Chem. 2015 Nov 13;290(46):27604–27617. doi:10.1074/jbc.M115.672345.
  • Samsonraj RM, Dudakovic A, Manzar B, Sen B, Dietz AB, Cool SM, Rubin J, van Wijnen AJ. Osteogenic stimulation of human adipose-derived mesenchymal stem cells using a fungal metabolite that suppresses the polycomb group protein EZH2. Stem Cells Transl Med. 2018 Feb 01;7(2):197–209. doi:10.1002/sctm.17-0086.
  • Lv L, Liu Y, Zhang P, Zhang X, Liu J, Chen T, Su P, Li H, Zhou Y. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015 Jan 01;39(1):193–205. doi:10.1016/j.biomaterials.2014.11.002.
  • Liu Y, Chen T, Du F, Gu M, Zhang P, Zhang X, Liu J, Lv L, Xiong C, Zhou Y. Single-layer graphene enhances the osteogenic differentiation of human mesenchymal stem Cells In Vitro and In Vivo. J Biomed Nanotechnol. 2016 June 01;12(6):1270–1284.
  • Lan F, Nottke AC, Shi Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol. 2008 June 01;20(3):316–325. doi:10.1016/j.ceb.2008.03.004.
  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004 Dec 29;119(7):941–953. doi:10.1016/j.cell.2004.12.012.
  • Ge W, Liu Y, Chen T, Zhang X, Lv L, Jin C, Jiang Y, Shi L, Zhou Y. The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials. 2014 July 01;35(23):6015–6025. doi:10.1016/j.biomaterials.2014.04.055.
  • Banfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WJ, Kundaje A, Gunawardena HP, Yu Y, Xie L, et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 2012 Sep 01;22(9):1646–1657. doi:10.1101/gr.134767.111.
  • Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011 Jan 07;331(6013):76–79. doi:10.1126/science.1197349.
  • Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al. Long noncoding RNAs with enhancer-like function in human. Cells Cell. 2010 Oct 01;143(1):46–58. doi:10.1016/j.cell.2010.09.001.
  • Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013 June 01;10(6):925–933. doi:10.4161/rna.24604.
  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010 Sep 24;39(6):925–938. doi:10.1016/j.molcel.2010.08.011.
  • Rosenbluth EM, Shelton DN, Sparks AE, Devor E, Christenson L, Van Voorhis BJ. MicroRNA expression in the human blastocyst. Fertil Steril. 2013 March 01;99(3):855–861. doi:10.1016/j.fertnstert.2012.11.001.
  • Li G, Fu N, Yang X, Li M, Ba K, Wei X, Fu Y, Yao Y, Cai X, Lin Y. Mechanical compressive force inhibits adipogenesis of adipose stem cells. Cell Prolif. 2013 Oct 01;46(5):586–594. doi:10.1111/cpr.12053.
  • Deng Y, Zhou H, Zou D, Xie Q, Bi X, Gu P, Fan X. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Biomaterials. 2013 Sep 01;34(28):6717–6728. doi:10.1016/j.biomaterials.2013.05.042.
  • Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012 Oct 25;31(43):4577–4587. doi:10.1038/onc.2011.621.
  • Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011 June 14;108(24):9863–9868. doi:10.1073/pnas.1018493108.
  • Chen J, Deng S, Zhang S, Chen Z, Wu S, Cai X, Yang X, Guo B, Peng Q. The role of miRNAs in the differentiation of adipose-derived stem cells. Curr Stem Cell Res Ther. 2014 May 01;9(3):268–279.
  • Lu CH, Chang YH, Lin SY, Li KC, Hu YC. Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv. 2013 Dec 01;31(8):1695–1706. doi:10.1016/j.biotechadv.2013.08.015.
  • Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, Patsch JM, Baum T, Oberbauer E, Lobach I, et al. Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells In Vitro. J Bone Miner Res. 2016 Dec 01;31(12):2173–2192. doi:10.1002/jbmr.2897.
  • Qureshi AT, Doyle A, Chen C, Coulon D, Dasa V, Del PF, Levi B, Monroe WT, Gimble JM, Hayes DJ. Photoactivated miR-148b-nanoparticle conjugates improve closure of critical size mouse calvarial defects. Acta Biomater. 2015 Jan 01;12(1):166–173. doi:10.1016/j.actbio.2014.10.010.
  • Liao YH, Chang YH, Sung LY, Kc L, Yeh CL, Yen TC, Hwang S-M, Lin K-J, Hu Y-C. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials. 2014 June 01;35(18):4901–4910. doi:10.1016/j.biomaterials.2014.02.055.
  • Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis. 2015 Aug 06;6:e1851. doi:10.1038/cddis.2015.221.
  • Xie Q, Wang Z, Zhou H, Yu Z, Huang Y, Sun H, Bi X, Wang Y, Shi W, Gu P, et al. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration. Biomaterials. 2016 Jan 01;75(1):279–294. doi:10.1016/j.biomaterials.2015.10.042.
  • Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res. 2009 May 01;24(5):816–825. doi:10.1359/jbmr.081230.
  • Chen S, Zheng Y, Zhang S, Jia L, Zhou Y. Promotion effects of miR-375 on the osteogenic differentiation of human adipose-derived mesenchymal stem cells. Stem Cell Rep. 2017 March 14;8(3):773–786. doi:10.1016/j.stemcr.2017.01.028.
  • Fan C, Jia L, Zheng Y, Jin C, Liu Y, Liu H, Zhou Y. MiR-34a promotes osteogenic differentiation of human adipose-derived stem cells via the RBP2/NOTCH1/CYCLIN D1 coregulatory network. Stem Cell Rep. 2016 Aug 09;7(2):236–248. doi:10.1016/j.stemcr.2016.06.010.
  • Li H, Li T, Fan J, Li T, Fan L, Wang S, Weng X, Han Q, Zhao RC. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ. 2015 Dec 01;22(12):1935–1945. doi:10.1038/cdd.2015.99.
  • Zhang WB, Zhong WJ, Wang L. A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone. 2014 Jan 01;58(1):59–66. doi:10.1016/j.bone.2013.09.015.
  • Hodges WM, O’Brien F, Fulzele S, Hamrick MW. Function of microRNAs in the osteogenic differentiation and therapeutic application of adipose-derived stem cells (ASCs). Int J Mol Sci. 2017 Dec 02;18(12):2597. doi:10.3390/ijms18122597.
  • Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q, Lin R, Han Q, Li J, Zhao RC. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett. 2012 July 30;586(16):2375–2381. doi:10.1016/j.febslet.2012.05.049.
  • Hu J, Liao H, Ma Z, Chen H, Huang Z, Zhang Y, Yu M, Chen Y, Xu J. Focal adhesion kinase signaling mediated the enhancement of osteogenesis of human mesenchymal stem cells induced by extracorporeal shockwave. Sci Rep. 2016 Feb 11;6(1):20875. doi:10.1038/srep20875.
  • Zhang Y, Wu X, Liang C, Bao P, Ding X, Chu M, Jia C, Guo X, Yan P. MicroRNA-200a regulates adipocyte differentiation in the domestic yak Bos grunniens. Gene. 2018 April 15;650(1):41–48. doi:10.1016/j.gene.2018.01.054.
  • Xie Q, Wei W, Ruan J, Ding Y, Zhuang A, Bi X, Sun H, Gu P, Wang Z, Fan X. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci Rep. 2017 Feb 16;7(1):42840. doi:10.1038/srep42840.
  • Li S, Hu C, Li J, Liu L, Jing W, Tang W, Tian W, Long J. Effect of miR-26a-5p on the Wnt/Ca(2+) pathway and osteogenic differentiation of mouse adipose-derived mesenchymal stem cells. Calcif Tissue Int. 2016 Aug 01;99(2):174–186. doi:10.1007/s00223-016-0137-3.
  • Li J, Hu C, Han L, Liu L, Jing W, Tang W, Tian W, Long J. MiR-154-5p regulates osteogenic differentiation of adipose-derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11. Bone. 2015 sep 01;78(1):130–141. doi:10.1016/j.bone.2015.05.003.
  • Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis. 2015 Aug 06;6(8):e1851. doi:10.1038/cddis.2015.221.
  • Luzi E, Marini F, Tognarini I, Galli G, Falchetti A, Brandi ML. The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucleic Acid Ther. 2012 April 01;22(2):103–108. doi:10.1089/nat.2012.0344.
  • Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res. 2008 Feb 01;23(2):287–295. doi:10.1359/jbmr.071011.
  • Nie S, Xu J, Zhang C, Xu C, Liu M, Yu D. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-kappaB/NFATc1 signaling pathways. Biochem Biophys Res Commun. 2016 Jan 29;470(1):61–67. doi:10.1016/j.bbrc.2015.12.115.
  • Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016 July 01;73(13):2491–2509. doi:10.1007/s00018-016-2174-5.
  • Jin C, Jia L, Huang Y, Zheng Y, Du N, Liu Y, Zhou Y. Inhibition of lncRNA MIR31HG promotes osteogenic differentiation of human adipose-derived stem cells. Stem Cells. 2016 Nov 01;34(11):2707–2720. doi:10.1002/stem.2439.
  • Jin C, Zheng Y, Huang Y, Liu Y, Jia L, Zhou Y. Long non-coding RNA MIAT knockdown promotes osteogenic differentiation of human adipose-derived stem cells. Cell Biol Int. 2017 Jan 01;41(1):33–41. doi:10.1002/cbin.10697.
  • Shen Y, Dong LF, Zhou RM, Yao J, Song YC, Yang H, Jiang Q, Yan B. Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. J Cell Mol Med. 2016 March 01;20(3):537–548. doi:10.1111/jcmm.12755.
  • Tian Y, Liu J, Bai X, Tan X, Cao Y, Qin K, Zhao Z, Zhang Y. MicroRNA expression profile of surgical removed mandibular bone tissues from patients with mandibular prognathism. J Surg Res. 2015 Sep 01;198(1):127–134. doi:10.1016/j.jss.2015.04.071.
  • Yi J, Liu D, Xiao J. LncRNA MALAT1 sponges miR-30 to promote osteoblast differentiation of adipose-derived mesenchymal stem cells by promotion of Runx2 expression. Cell Tissue Res. 2018 Dec 03. doi:10.1007/s00441-018-2963-2.
  • Gao Y, Xiao F, Wang C, Wang C, Cui P, Zhang X, Chen X. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem. 2018 Aug 01;119(8):6986–6996. doi:10.1002/jcb.26907.
  • Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. Rna. 2007 March 01;13(3):313–316. doi:10.1261/rna.351707.
  • Huang G, Kang Y, Huang Z, Zhang Z, Meng F, Chen W, Liao W, Zhang Z. Identification and characterization of long non-coding rnas in osteogenic differentiation of human adipose-derived stem cells. Cell Physiol Biochem. 2017 Jan 20;42(3):1037–1050. doi:10.1159/000478751.
  • Huang Y, Zheng Y, Jia L, Li W. Long noncoding RNA H19 promotes osteoblast differentiation via TGF-beta1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells. 2015 Dec 01;33(12):3481–3492. doi:10.1002/stem.2225.
  • Liang WC, Fu WM, Wang YB, Sun YX, Xu LL, Wong CW, Chan K-M, Li G, Waye MM-Y, Zhang J-F. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep. 2016 Feb 08;6:20121. doi:10.1038/srep20121.
  • Ravid O, Shoshani O, Sela M, Weinstock A, Sadan TW, Gur E, Zipori D, Shani N. Relative genomic stability of adipose tissue derived mesenchymal stem cells: analysis of ploidy, H19 long non-coding RNA and p53 activity. Stem Cell Res Ther. 2014 Dec 17;5(6):139. doi:10.1186/scrt529.
  • Nakatsuka R, Nozaki T, Uemura Y, Matsuoka Y, Sasaki Y, Shinohara M, Ohura K, Sonoda Y. 5-Aza-2ʹ-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol. 2010 May 01;55(5):350–357. doi:10.1016/j.archoralbio.2010.03.003.
  • Zhou GS, Zhang XL, Jp W, Zhang RP, Xiang LX, Dai LC, Shao J-Z. 5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation. Cytotechnology. 2009 July 01;60(1–3):11. doi:10.1007/s10616-009-9203-2.
  • Berdasco M, Melguizo C, Prados J, Gomez A, Alaminos M, Pujana MA, Lopez M, Setien F, Ortiz R, Zafra I, et al. DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. Am J Pathol. 2012 Dec 01;181(6):2079–2093. doi:10.1016/j.ajpath.2012.08.016.
  • Keen JC, Yan L, Mack KM, Pettit C, Smith D, Sharma D, Davidson NE. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2ʹ-deoxycytidine. Breast Cancer Res Treat. 2003 Oct 01;81(3):177–186. doi:10.1023/A:1026146524737.
  • Su GH, Sohn TA, Ryu B, Kern SE. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res. 2000 June 15;60(12):3137–3142.
  • Conigliaro A, Costa V, Lo DA, Saieva L, Buccheri S, Dieli F, Josefsen D, Ruud E, Naderi S, Blomhoff HK. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015 Aug 14;14:155. doi:10.1186/s12943-014-0278-9.
  • Yu X, Odenthal M, Fries JW. Exosomes as miRNA Carriers: formation-Function-Future. Int J Mol Sci. 2016 Dec 02;17(12):2028. doi:10.3390/ijms17122028.
  • Nagy C, Turecki G. Transgenerational epigenetic inheritance: an open discussion. Epigenomics-UK. 2015 Aug 01;7(5):781–790. doi:10.2217/epi.15.46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.